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Abstract—Algorithmic complexity vulnerabilities (ACVs) can
be exploited to cause denial-of-service. Detecting ACVs is hard
because of the numerous kinds of loop complexities that cause
ACVs. This renders automatic detection intractable for ACVs.
State-of-the-art loop analyses aim to obtain precise loop iteration
bounds automatically; they can do so for relatively simple loops.
This research focuses on techniques to amplify intelligence so that
the analyst can gain a deeper knowledge of complex loops that is
necessary to discover ACVs. We describe: (a) loop abstractions
and use them to define patterns and other characterizations of
loop behaviors which in turn can be applied to create automated
filters to isolate complex loops with high likelihood of ACVs,
(b) innovative visual querying mechanisms for interactive loop
analysis; they enable the analyst to hypothesize ACVs and
gather the necessary evidence for targeted dynamic analysis
for confirming ACVs. These capabilities are illustrated with an
ACV detection case study. We present an empirical study using
over 5000 loops from 4 open source libraries, and 18 DARPA
challenge apps. The study evaluates the usefulness of the loop
characterizations and patterns to enable the analyst to create
effective filters to isolate complex loops.

Tool: https://ensoftcorp.github.io/loop-comprehension-toolbox/
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I. INTRODUCTION

The algorithmic complexity vulnerabilities (ACVs) are
about runtime space or time consumption of programs. Adver-
saries can exploit ACVs to mount denial of service attacks. For
example, the denial of service commonly known as the “billion
laughs attack” or an XML bomb, is caused by an ACV in the
application that creates a string of 109 concatenated “ lol”
strings requiring approximately 3 gigabytes of memory [1]
when parsing a specially crafted input file less than a kilobyte.
A recent study has characterized a class of ACVs in the Java
library [2]. Similar to the XML bomb, it is a class of ACVs
associated with the serialization and deserialization APIs.

A completely automatic analysis is intractable for detecting
ACVs [3]. As discussed later, automatic analyses can deter-
mine precise loop iteration bounds only for relatively simple
loops. On the contrary, ACVs typically result from complex
loop termination logic. The DARPA STAC program [3] has
called for a novel human-in-the-loop approach to detect ACVs.
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We propose a four-step approach to detect ACVs: (a) auto-
matically generate a loop catalog that identifies all loops and
the characteristics of each loop. We introduce new concepts
and patterns to define loop characteristics, (b) applying the
knowledge gained from the loop catalog, the analyst can
configure filters to select loops that the analyst wants to scru-
tinize, (c) the analyst uses the visual querying mechanism to
scrutinize selected loops and the control flow paths containing
the loops to gather evidence for ACVs, (d) based on the
evidence, the analyst performs targeted dynamic analysis to
confirm each ACV. The dynamic analysis and the tool for it
are described in the paper [4].

An important part of our research has been to decipher
relevant loop characteristics by studying publicly known ex-
amples of ACVs and the ACV challenges posed by DARPA.
For example, an automatic analyzer can determine the bound
to be 10 for the loop for(i=0; i<10;i++) int arr = new

int[Integer.MAX];. However, not the bound but the large
array allocation in each iteration is the loop characteristic
relevant for ACVs. The relevant characteristics may be hidden
in a method that is invoked within the loop. Thus, an inter-
procedural analysis is necessary to compute loop character-
istics. Moreover, the relevant characteristics may be just on
one path, and not on the other paths within a loop. Thus, a
path-sensitive analysis is also important to reason about ACVs.
Furthermore, it is not enough to characterize a loop in isolation.
It is important to characterize loops in the context of program
artifacts that connect a loop to the rest of the program. For
example, since ACVs are triggered by attacker’s input, it is
important to characterize whether the termination of a loop
can be controlled by user input.

In summary, our research contributions are:
• Loop Abstractions: These are the building blocks for charac-

terizing loops, and they include: (a) a data flow abstraction
for loops called termination dependence graph, (b) a control
flow abstraction called loop projected control graph.
• Loop Characterizations and Patterns: These are derived

using loop abstractions and applied to enable the analyst to
create filters to select loops with high possibility of ACVs.
Specifically, we have 24 loop patterns based on different
termination characteristics.
• Interactive Querying for Visual Loop Scrutiny: These mech-

anisms, called Smart Views, enable the analyst to scrutinize
selected loops and gather the evidence for ACVs. The
analyst can compose powerful program analyses using Smart
Views and a graphical query language.

We have built an integrated tool chain to detect ACVs.
The tool chain serves multiple purposes. We have used it to



discover loop abstractions through empirical studies of loops.
It provides the functionality to generate the loop catalog, create
the filters, and the visual querying mechanism. The tool chain
is built using Atlas [5], a graph database platform for software
analysis and visualization.

We present an empirical study based on the totality of
more than 5000 loops from 4 open source libraries, and 18
DARPA ACV challenge apps. The purpose of the study is
to evaluate usefulness and applicability of the abstractions,
the loop behavior patterns, and the characterizations to create
filters.

II. RESEARCH GAP

We discuss the research gap that has motivated the research
presented in this paper.

The program artifacts that can lead to ACVs include
loops, recursion, or resource-intensive library APIs [2]. In
this research the focus is on loops. To assess the relevant
loop characteristics, we studied loops with ACVs. We have
curated 15 representative loop snippets from the challenge
apps provided by DARPA. We have made these loops snippets
available in a public repository [6].

As an experiment, we tried the state-of-the-art loop analysis
tool Proteus [7] that received the 2016 Distinguished FSE Pa-
per award. None of the 15 loops can be precisely summarized
by Proteus. We then identified specific characteristics of what
makes the curated loops complex. Using them as markers
of complexity, we found that the loops in commonly cited
benchmarks (e.g. SV-COMP [8]) lack the complexity that one
encounters in detecting ACVs.

Our complexity markers can be summarized as: (a) loop
termination depends on variables that are not induction vari-
ables [9], (b) loop termination logic involves inter-procedural
dependencies, (c) the complex connection between user input
and loop termination, (d) the multitude of paths and the
presence or the lack thereof guards on these paths to prevent
excessive resource consumption operations in the loop. Of the
15 ACV loops we have gathered from the DARPA challenge
apps, all 15 loops have the complexity markers (a), (b), (c),
and 11 loops have the marker (d).

As an alternative to precise analysis, we tried the use of
smells to detect ACVs [10]. In line with the findings of [11],
these smells tend to be either too specific (too many false
negatives) or too generic (too many false positives).

To the best of our knowledge, there are no existing tools
to help human analysts to detect ACVs. We are also not
aware of any tools that allow the analyst to visually query
for the relevant program artifacts that affect loop termination.
Moreover, in detecting ACVs the added complication is to
perform path-sensitive analysis. While a completely automated
analysis of loop termination is intractable, a big need is for
tools that can perform automated analysis to assist with human
reasoning for loop termination. There is also a need for tools to
help the analyst to visualize interactions through library calls
because as discussed in the recent paper [2], the ACVs can be
due to library calls.

We present research that employs automation to amplify
human intelligence to address the research gap. It is research

motivated by the Intelligence Amplification (IA) vision pro-
pounded by Frederick Brooks [12]: “If indeed our objective
is to build computer systems that solve very challenging
problems, my thesis is that IA > AI, that is, that intelligence
amplifying systems can, at any given level of available systems
technology, beat AI systems. That is, a machine and a mind
can beat a mind-imitating machine working by itself.”

Organization: The paper is organized as follows. Section III
describes loop abstractions that serve as building blocks for
developing loop characterizations relevant to detect ACVs
described in Section IV. Section V describes the interactive
analysis capability. Section VI describes an ACV detection
study. Section VII describes an empirical study of loops from
DARPA challenge apps and open source projects. Section VIII
discusses related research. Section IX concludes the paper.

III. LOOP ABSTRACTIONS

Loop abstractions capture and represent the essentials of
loops and the connecting parts of the program that affect loop
behaviors. One abstraction is to capture the loop termination
behavior based on the data flow to the loop termination
conditions. Another abstraction is to facilitate path-sensitive
analysis of loop behaviors to identify a control flow path with
“expensive computation” as a potential ACV.

Termination Dependence Graph (TDG): This is a data flow
graph designed to capture: (a) the data sources that influence
the loop termination, and how the termination depends on local
or inter-procedural data flow, and (b) the modifications of the
variables that affect the loop termination.

This abstraction serves as the foundation for developing
loop behavior patterns, such that each pattern implies a spe-
cific mode in which the loop terminates. These patterns are
discussed in Section IV-C.

The union of backward data flow slices from the termina-
tion conditions gives us all the data sources which can influ-
ence the termination conditions. However, this is not sufficient
to reason about the loop termination behavior because it does
not capture all the modifications of these data sources. So we
also need to compute forward data flow slices starting from
the data sources to capture the modifications of the variables
that affect the loop termination.

The TDG is defined with respect to a loop’s termination
conditions, i.e., the branch conditions through which the loop
can exit. The TDG for a loop is S∪F where (1) S includes the
union of all the intraprocedural backward data flow slices from
the termination conditions of the loop, and (2) F includes the
union of all the intraprocedural forward data flow slices from
all the variable assignments in S. The S part gathers the data
sources that influence the loop termination, and F the part
gathers the modifications of the variables that affect the loop
termination.

A summary of the inter-procedural data flow dependencies
is computed along with the TDG and is included in the loop
catalog. For example, the TDG of a loop in a method M
whose termination depends on the size of a collection passed
as a parameter to method M requires the data flow from all
potential methods that call M . The data flow between the
formal parameter and the termination condition is shown in



the TDG. An analyst can use the parameter in the TDG as an
input to an Atlas query to gather the inter-procedural data flow
into the parameter.

In Section IV-C, we discuss the use of TDG in an empirical
study to define the Loop Termination Patterns (LTPs). The LTP
type of each loop is recorded in the loop catalog. The LTP
type indicates the complexity of loop termination and it is an
important metric to select complex loops that are more likely
to have ACVs.

Loop Projected Control Graph (LPCG): This is designed
as a compact representation of relevant control flow within the
loop. There is an LPCG per loop.

The compaction is based on the Projected Control Graph
(PCG), a notion introduced by Tamrawi et al [13]. It is an
optimal mathematical abstraction to address the roadblocks to
path-sensitive analysis. The PCG is a projection of the CFG to
retain only the execution behaviors relevant to a given problem
and elide duplicate paths with identical execution behavior.

A mathematical definition of the PCG and an efficient
algorithm to transform a CFG to a PCG are presented in [13].
We create an LPCG for each loop by applying the PCG
algorithm to the CFG subgraph restricted to the loop. The PCG
algorithm requires as input a subset of CFG nodes relevant
to behaviors of interest. For deriving an LPCG we use the
following nodes: (a) loop header node (entry point of the
loop), (b) termination condition nodes, and (c) data flow and
callsite nodes from the TDG. In the case of the LPCG, paths
reaching the same termination condition are elided by the PCG
algorithm unless the paths include different sets of nodes from
the TDG.

The LPCG distills the distinct loop termination behaviors
in a compact representation. It is especially useful when the
number of control flow graph (CFG) paths is very large
but many paths have identical termination behaviors. LPCG
facilitates detection of ACVs by providing an efficient way to
focus on distinct behaviors. LPCGs are also useful to isolate
paths with respect to the loop functionality (e.g., network, IO,
crypto, etc.). To do so, the calls to subsystems are used as
relevant nodes for creating the LPCG.

IV. LOOP CHARACTERIZATIONS

Loop characterizations are computed automatically and
used to create filters to select loops with high possibility of
ACVs. We have used for this study 25 loop characterizations
organized by categories such as conformance to loop termi-
nation patterns, monotonicity, loop control variable attributes,
data flow to the loop control variables, the control flow paths
inside a loop, and interactions with the subsystems

A. Loop Control Variable Attributes

A Loop Control Variable (LCV) is a variable that influ-
ences any termination condition of a loop. LCVs subsume
induction variables [9], which are defined as variables whose
modification in every iteration can be expressed as a loop
invariant expression. Our definition of LCVs is particularly
important for detecting ACVs. For example, consider a variable
influencing the termination of a loop passed as an argument
to a method, where it is assigned to a value controlled by
the attacker’s input. Clearly, it is critical to reason about the

Fig. 1: Loop attributes used for characterizations

variable’s updates to detect a potential ACV. This variable
would qualify as an LCV for the loop. However, it is not an
induction variable.

We analyze LCVs over two dimensions: the type of the
LCV, and the data flow dependencies of the LCV.

Type of Loop Control Variables: Knowledge of the type
of an LCV for a loop can indicate what kinds of resource
consumption may cause an ACV. For example, knowing that
an LCV is of array type, along with the fact the array size
can be controlled by the attacker, raises the possibility of
ACV involving excessive space consumption. We support the
following control variable types:

• Primitive: Primitive variables are used to iterate over a
range of numeric values. An example of such a loop’s header
is for(i = 0; i < n; i++), where i is the loop control
variable.
• Array: Array index variables are used to traverse an array.

An example of such a loop header is for(i = 0; i <

length(array); i++).
• Cursor: Cursors are used to iterate over collections.

java.util.Iterator and java.util.Enumeration are the
most commonly employed cursors. Cursor APIs come in
pairs, one which advances the cursor and other checks
existence of a valid next cursor position. For example, loops
invoke Iterator.next() in each iteration, which returns
the current element at the cursor and advances the cursor.
This is paired with a call to Iterator.hasNext() which
checks for existence of a valid next cursor position prior
to the next iteration. A similar iteration mechanism is pro-
vided by java.util.Enumeration’s hasMoreElements

and nextElement APIs.

Data Flow Dependency of Loop Control Variables: In
addition to the type, it is also important to know the data
flow to the loop control variables. We will refer to this as
the data dependence of loop control variables. We track intra-
procedural (local) and inter-procedural (global) data depen-
dence. The different forms of global dependence include object
field, parameter, or return value from a callsite and these are
recorded to assist with interactive analysis and cataloging.
The information is particularly useful for detecting ACVs. For
example, if the dependence for the size of the array is through a
parameter, then passing a large array size value as a parameter
creates the ACV possibility of excessive space consumption.

We define four levels of locality of dependencies for every
loop control variable in a loop: 1) Local, 2) Callsite, 3)
Parameter, 4) Field. We combine this information with the
three types of the loop control variables to create a loop



control variable attribute vector of size 12 for every loop to
comprehend and catalog loops.

Loops whose termination conditions depend on the result
of a callsite require an inter-procedural analysis to determine
how the loop’s termination may be influenced. Since loops
invoking APIs in the java.io package, e.g., while((line =

file.readLine()) != null), are very common programming
practices, we specifically identify such loops as belonging to
the ‘IO API’ class. The rest of the loops with callsite loop
control variables are classified as ‘OTHER API’.

B. Loop Monotonicity

A monotonic loop is one in which all loop control variable
updates go in one direction, either all increments or all
decrements. In the simple example for(i=0; i<10; i++)

{...}, all updates i++ to the loop control variable i are
increments. Operator and callsites update complexities can
make it impractical to determine some cases of updates as
increment, decrement; we classify them as neither. The salient
points of how we handle the complex monotonicity cases are:

• We perform an analysis to detect the net effect of modi-
fications of loop control variables. A monotonicity catego-
rization of arithmetic operators on primitive loop control
variables cannot simply be based on whether it performs
addition, subtraction, or some such operation. For example,
an addition operation cannot always be considered an in-
crement, it could be a decrement if the added number is
negative.

• We classify callsite operators by partitioning the relevant
APIs into increment APIs and decrement APIs respectively.
For example, Stack.push() and Stack.pop() are treated
as increment and decrement APIs respectively. We have
developed a model of increment and decrement APIs that
operate on commonly used collection types in the JDK.

We determine monotonicity as follows:
1) Mark all the operators on loop control variables as incre-

ment or decrement (or neither).
2) Mark a control flow path in LPCG (beginning at the loop

header and ending at a termination condition) as monotonic
if includes only the increment or only the decrement
operators. A path with operator of both kind or with a
neither operator is marked as non-monotonic.

3) A loop is marked non-monotonic if has at least one non-
monotonic path. Note that monotonicity does not mandate
a monotonic operation in every iteration.

The above algorithm is sound, i.e., it correctly identifies
monotonic loops. Its completeness cannot be guaranteed in
cases such as when the LCV is passed as a parameter to a
method or the loop invokes an API which we do not model.

C. Loop Termination Patterns

Loop Control Variable attributes when combined with loop
monotonicity gives an idea of how a loop is going to behave.
This enables us to define patterns of loop behaviors. We call
these patterns Loop Termination Patterns (LTP).

LTP is defined as a triple (M,T,D), where M ∈
{true,false} refers to the monotonicity of the loop, T ∈
{Primitive,Array, Collection} refers to the type of the
LCVs, and D ∈ {Local, F ield, Parameter, Callsite} refers
to the dependency of the LCVs. This gives rise to 24 LTPs. A

Fig. 2: An example of a loop termination pattern and its key
parts

loop may have match to more than one LTP, in which case we
list all possible matches. As shown in our study in section VII
these 24 LTPs cover a significant portion of the real-world
loops.

The 24 LTPs are divided in two groups as simple or
complex termination patterns. Conformance to a simple LTP
implies that no inter-procedural analysis is required to reason
about the loop’s termination. Figure 2 shows the TDG of
a loop which conforms to a simple LTP. The highlighted
parts of the TDG are captured in the LTP. Loops conforming
to complex LTPs may require inter-procedural analysis, and
additionally human judgement, in order to reason about the
loop’s termination. As shown in the case study VI, the complex
LTP can serve as a filter to find loops more likely to have
ACVs.

D. Subsystem Interactions

In addition to knowing how a loop terminates, it is im-
portant to have knowledge about the APIs invoked inside a
loop’s body in order to develop a vulnerability hypothesis.
The analysts can deduce the high level functionality of the
loop using the knowledge about the invoked APIs. We classify
the APIs into 19 categories corresponding to JDK subsystems.
Table I lists the subsystems and examples of packages they
contain.

E. Automatic generation of loop catalog

We use the Atlas program analysis platform [5] to generate
a queryable, directed multi-attributed program graph whose
nodes and edges represent program artifacts and their relation-
ships for a given application. We use an implementation of
the DLI [14] algorithm to identify all loops in the application.
Next, we compute the properties related to loop termination
(properties of TDG, LPCG, and LTPs) and operations in the
loop body (subsystem interactions) for each loop in a given
application. The computed information is saved as a CSV file,



Subsystems APIs belonging to this subsystem
JavaCore java.util, java.lang
Hardware javax.sound, javax.sound.midi
IO java.nio, java.io
Network java.net, javax.net, java.rmi
RMI org.omg.CORBA, javax.rmi.CORBA
Database javax.sql, javax.sql
Log java.util.logging
Serialization javax.xml.bind, javax.xml.ws.soap
Compression java.util.jar, java.util.zip
UI java.applet, java.awt, javax.swing
Introspection java.lang.reflect, java.lang.invoke
Iterables java.util.List, java.util.Vector etc.
Garbage Collection java.lang.ref
Security java.security, javax.security etc.
Crypto javax.crypto
Math java.math
Random java.util.Random etc.
Threading java.util.concurrent etc.
Data Structure java.beans, java.text etc.

TABLE I: JDK Subsystems.

which can be used by the analyst as a loop catalog. This
includes monotonicity of a loop, the LTPs matched, size of
the TDG and LPCG, number of callsites in loop body and
their distribution among control flow paths, and subsystem
interactions. The analyst can then apply filters with one or
more criteria and/or rank the loops in order to select or
eliminate loops.

The loop characteristics saved in the loop catalog are also
saved as appropriate node and edge attributes in the Atlas
program graph. This allows the analyst to filter and query
specific loops and perform on-demand visual inspection of
program artifacts and properties of loops selected through a
query.

V. VISUAL QUERYING FOR INTERACTIVE LOOP
ANALYSIS

Visual querying mechanisms aid interactive analysis of
loops in order to hypothesize ACVs. We have designed two
Smart Views for interactive visualization to scrutinize loops
for ACVs. These Smart Views are based on the two loop
abstractions described in Section III. We have also created
a filtering framework that enables custom selection of loops
using specified constraints on loop characteristics.

A. Smart Views

A Smart View is designed to display and query a graph
abstraction relevant to solving a particular problem. It is an
interactive visualization mechanism, and offers the following:
(a) a menu to select a type of software analysis to produce the
graph abstraction, (b) invocation of the analysis by clicking
on a source code object to which the analysis is applicable,
(c) an interactive visualization of the analysis result. Atlas
comes with basic Smart Views for call graphs, control flow
graphs, data flow graphs, etc., and provides APIs to create
customized Smart Views.

Smart Views display graph abstractions and incorporate
different ways to interact with those graphs: (1) a capability to
zoom in and out, (2) a capability for incremental viewing of
a graph, (3) several layouts (e.g. hierarchical, orthogonal) to
display the graphical result of the analysis, (4) search facility

to look for a node or an edge by their name, (5) saving the
graphical result as an image file for offline use, (6) two-way
source correspondence between the elements of the displayed
graph and the corresponding source code, (7) background
colors and border styles to highlight the nodes and edges.
Smart Views integrate seamlessly with other Smart Views
to enable composition of analyses where one Smart View
generates a graph that is used as an input for another Smart
View. Additionally, Smart Views can be composed with the
filtering framework (Section V-B) and ad-hoc Atlas queries [5].
Termination Data Flow Smart View: Displays the Termi-
nation Dependence Graph (TDG) (Section III) for a selected
loop header. It enables incremental visualization of a large
and complex TDG starting with the TDG roots. It provides
color coding of nodes to ease comprehension: Red for the
termination conditions, Gray for roots of the TDG, and Green
for callsites that point to inter-procedural data flow that affect
termination.
Use Case: It serves as evidence to scrutinize whether and how
a loop terminates. Especially, it can save significant time and
effort to comprehend inter-procedural dependence of a loop
termination condition.
Loop Projected Control Flow Smart View: Displays the
Loop Projected Control Graph (LPCG) (Section III) for a
selected loop header. It extends an LPCG by including control
flow paths to callsites that may not affect the termination but
could still create an ACV through a resource-intensive call.
It provides the following color coding of nodes: Yellow for
the selected loop header, various shades of Blue to display the
loop body of nested loops with respect to their nesting depths
(darker shades of Blue indicate loops nested deeper), Red for
termination conditions (and Cyan for other branch conditions),
Green for callsites, and Magenta or Gray respectively for the
increment or decrement operators or API calls. The control
flow edges are displayed as continuous lines, and event flow
edges as dashed lines. As described in [13], the event flow
edges as the induced edges to show the control flow reacha-
bility from one PCG node to another.
Use Case: It facilitates comprehension through display of paths
that influence termination. With a separate display it shows
paths with callsites that could create an ACV with a resource-
intensive call. It also helps scrutinize loops for monotonicity.

B. Loop Filters

We have developed a filtering framework to select loops
matching a combination of the loop characteristics from the
loop catalog. The framework currently supports the creation
of custom filters by adding constraints on String, primitive
and boolean properties. An example of a boolean property
is monotonicity – a loop is either monotonic or not; and
the two possible constraints based on this property would be
“monotonic: true” and “monotonic: false”. The nesting depth
of a loop is an example of a primitive (integer) property. For
example, the constraint “nesting-depth greater than 4” selects
all loops having nesting depth of 5 or above within the method.
A filter consists of a conjunction of constraints, i.e., a filter
consisting of the above two constraints would select monotonic
loops with nesting depth over 4. The filtering framework also
allows analysts to fork a filter, i.e., create a new filter that
includes a subset of the constraints added to an existing filter.
This is useful for the analyst to explore multiple hypotheses



related to ACVs in the application simultaneously. The use of
a loop filter to filter loops causing ACVs is illustrated in the
case study in Section VI.

Currently, we provide filters based on following six charac-
teristics: 1) Reachability, 2) Subsystem Interaction, 3) Presence
of branch conditions that affect the resource consumption
of the loop, 4) LTPs, 5) Monotonicity, 6) Nesting Depth.
We describe first three filters here. The filtering framework
currently supports selection of loops, but is extensible and in
the future could support selection of other artifacts such as
methods or types based on their properties relevant to finding
ACVs.

Reachability Filter: This filter selects the loops that are
reachable from user input. It supports two boolean properties
to enable selection of loops reachable from all the main meth-
ods (if supported) and loops reachable from web application
handlers such as HTTP request handlers.
Use Case: For a loop to cause an ACV, the input provided by
attacker must reach the loop to selectively trigger an execution
path or influence its termination. This filter is useful to select
the loops which an attacker can influence.

Subsystem Interaction Filter: This filter selects the loops
that interact with a given subsystem (see Section IV-D). It
supports a String property that specifies a subsystem and
enables selection of loops which interact with the specified
subsystem.
Use Case: Domain knowledge often provides insights to the
analyst about how the APIs invoked in loops can cause
ACVs. For example, thread creation within a loop indicates
the possibility of an ACV due to exhaustion of stack memory.
To select loops that may admit this possibility, the analyst
may choose to apply this filter with the String property
’THREADING SUBSYSTEM’.

Differential Branch Filter: This filter selects loops containing
a differential branch, i.e., a branch condition that affects the
loop’s consumption of space or time. For example, a branch
condition which determines the size of the array being allo-
cated in a loop is a differential branch in the loop. Differential
branches are interesting from two perspectives: 1) operations
governed by the differential branch can potentially cause an
ACV e.g., the branch governs file I/O operations, 2) the
differential branch is governed by a parameter controlled by
the attacker such as the size of a collection provided by the
attacker. We support following kinds of differential branches
relevant to ACVs: 1) branches that are governed by size
of a collection, 2) branches governing operations that cause
network interaction, 3) branches governing file I/O operations.
Use Case: Loops iterating over arrays or collections (e.g.,
sorting algorithms, matrix multiplication) may be potentially
vulnerable to ACVs if the size of the array or collection can
be controlled by the attacker. This filter is useful to find such
loops when used in combination with reachability filter.

VI. CASE STUDY OF AC VULNERABILITY DETECTION

We describe an ACV detection case study drawn from our
research on the DARPA STAC program. For this case study, we
describe the following steps in our approach to detect ACVs:
(1) an automated analysis to characterize loops and generate
a loop catalog, (2) using the catalog to apply filters to select
loops, and (3) scrutinizing the selected loops to detect an ACV.

Fig. 3: Using filters to select a loop likely to have an ACV

App Description: Gabfeed3 is a web forum software which
allows users to post messages and search posted messages.
The application utilizes a custom merge sort for sorting mes-
sages. The application consists of 23882 lines of Jimple, an
intermediate representation of Java bytecode.

A. Phase I: Automated Generation of Loop Catalog

A loop catalog (Section IV-E) consisting of the following
information about each loop is generated: (1) the TDG and
LPCG abstractions, (2) whether it is monotonic, (3) applicable
termination patterns, (4) subsystem APIs and the control flow
paths on which they are invoked in the loop, and (5) structural
characteristics such as the number of nesting levels and the
inter-procedural nesting depth for loops in which the nesting
is split across multiple functions. This information can be used
to create a variety of filters to select loops. This case study
of the Gabfeed3 application illustrates five key filters. Using
these filters, we were able to isolate one loop out of 112 loops
which required further scrutiny. On further scrutiny, an ACV
was detected in this loop.

B. Phase II: Automated Filtering of Loops

The goal is to select a subset of loops that are likely to have
an ACV. We use the Filter View (described in Section V-B)
that enables creation of custom filters using information in the
loop catalog. Application of the filters selects a subset of loops
for further scrutiny.

The analyst uses a high-level understanding of the app
to create appropriate combination of filters. In Gabfeed3, the
high-level understanding is that it is a web application, it
contains a server component to handle user requests, and thus
only the loops reachable from this server component are likely
to contain an ACV.

In this case study, the combination of filters used is shown
in Figure 3. Gabfeed3 has a total of 112 loops in it. We apply
the filters as follows,
• Reachable Loops: First, the analyst applies constraints based

on the definition of an ACV: it should be possible for
the attacker to control the loops that cause an ACV. As
Gabfeed3 is a web application, analyst selects only loops
reachable from the web entry point. #Loops selected - 58
out of 112
• Loop Body Subsystem Interactions: Second, the analyst ap-

plies the domain knowledge that all user input is embedded
in a HttpExchange object. This prompts the analyst to
select loops that use data extracted from this object via



getters, setters, or Java APIs. Thus, the analyst selects loops
which interact with a Java API (JAVACORE Subsystem, see
Section IV-D). #Loops selected - 44 out of 58

• Loop Monotonicity: As termination of non-monotonic loops
is more complex than that of monotonic loops, the analyst
chooses to select non-monotonic loops using the loop mono-
tonicity filter for further analysis. #Loops selected - 33 out
of 44

• Loop Termination Pattern: Loops whose termination have
inter-procedural dependencies are complex, and typically
involve invocation of APIs such as IO or other APIs in the
app. Based on this knowledge, the analyst decides to apply
the filters that select loops whose termination depends on
other APIs in the app. #Loops selected - 29 out of 32

• Differential Branch: Finally, knowing that Gabfeed3 stores
messages in collections, the analyst applies the differential
branch filter to select loops with at least one differential
branch influenced by size of a collection. #Loops selected -
1 out of 28

Through the filtering process, the analyst has thus se-
lected one loop as a candidate for an ACV, namely
Sorter.changingSortHelper.label1. He now uses the smart
views to scrutinize this loop interactively.

C. Phase III: Detecting ACV by Interactive Scrutiny of Se-
lected Loops

Analyst focuses on the one loop selected using the fil-
ters. Because the selected loop has a differential branch
associated with it (as indicated by the filters applied in
Phase II), the analyst decides to analyze the paths and the
behaviors created by this differential branch condition. For
that he applies Loop Projected Control Flow Smart View
(described in Section V-A) which shows only behaviors of
the loop relevant to loop’s termination. Figure 4 displays
the Loop Projected Control Flow Smart view for the loop
- Sorter.changingSortHelper.label1. Of the four branch
nodes in this loop, only the node labeled DB is a differential
branch node. The analyst notices that two different behaviors
induced by this branch are based on whether the size of the
input is a multiple of eight or not. There is no apparent reason
for this distinction and the analysts suspects that it could be a
potential ACV.

A closer inspection of the code (available on our curated
repository of ACV loops [6]) reveals that if the size of
collection is multiple of eight then the loop exhibits quadratic
or worse behavior and O( nlogn) otherwise. This creates an
ACV which an attacker can trigger. We were able to confirm
this ACV using dynamic analysis.
Remark: The specific filters and the use of Smart Views would
vary depending on the high-level knowledge about the app and
how the analyst chooses to apply that knowledge. The above
case study illustrated one combination of filters that lead to
detection of a particular ACV.

VII. AN EMPIRICAL STUDY WITH CHALLENGE APPS
AND OPEN SOURCE SOFTWARE

The artifacts including loop abstractions, the loop classi-
fication, and the loop termination patterns are useful if they
can provide a good coverage and facilitate understanding
and selection of complex loops in real-world software. So,

gabfeed_3.jar

com.cyberpointllc.stac.sort

Sorter

changingSort

label1:
$z0 = virtualinvoke indexStack.<java.util.Stack: boolean empty()>();

$i1 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getEnd()>();

$i19 = $i18 - 1;

label2:
q = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getStart()>();

$i15 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getEnd()>();

if $z2 == 0
goto label6;

$r10 = staticinvoke <com.cyberpointllc.stac.sort.ArrayIndex: com.cyberpointllc.stac.sort.ArrayIndex partition(int,int)>($i16, q);

$r4 = virtualinvoke indexStack.<java.util.Stack: java.lang.Object pop()>();

$i16 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getStart()>();

label3:
$i9 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getStart()>();

$i6 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getStart()>();

$r0 = new java.util.Stack;

if $z0 != 0
goto label8;

$i20 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getStart()>();

$i13 = virtualinvoke conditionObj0.<com.cyberpointllc.stac.sort.Sorter$SorterHelper0: int getValue()>();

$i10 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getEnd()>();

$i5 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getEnd()>();

$z1 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: boolean isPartition()>();

$i3 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getMidpoint()>(); $i8 = virtualinvoke conditionObj1.<com.cyberpointllc.stac.sort.Sorter$SorterHelper1: int getValue()>();

if $i12 != $i13
goto label4;

if $i0 >= $i1
goto label7;

$r8 = staticinvoke <com.cyberpointllc.stac.sort.ArrayIndex: com.cyberpointllc.stac.sort.ArrayIndex partition(int,int)>($i14, $i15);

if $z1 == 0
goto label5;

virtualinvoke indexStack.<java.util.Stack: java.lang.Object push(java.lang.Object)>($r6);

virtualinvoke indexStack.<java.util.Stack: java.lang.Object push(java.lang.Object)>(initial);

listLen = $i7 + 1;

label4:
$i14 = q + 1;

$d1 = staticinvoke <java.lang.Math: double floor(double)>($d0);

$i4 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getEnd()>();

virtualinvoke indexStack.<java.util.Stack: java.lang.Object push(java.lang.Object)>($r8);

$i2 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getStart()>();

$i0 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: int getStart()>();

specialinvoke $r3.<com.cyberpointllc.stac.sort.Sorter$SorterHelper1: void <init>(com.cyberpointllc.stac.sort.Sorter,int)>(this, 8);

specialinvoke this.<com.cyberpointllc.stac.sort.Sorter: void merge(java.util.List,int,int,int)>(list, $i2, $i3, $i4);

label5:
$z2 = virtualinvoke index.<com.cyberpointllc.stac.sort.ArrayIndex: boolean isMerge()>();

$i11 = interfaceinvoke list.<java.util.List: int size()>();

if listLen < $i8
goto label2;

virtualinvoke indexStack.<java.util.Stack: java.lang.Object push(java.lang.Object)>($r10);

$i17 = listLen / 8;

$r6 = staticinvoke <com.cyberpointllc.stac.sort.ArrayIndex: com.cyberpointllc.stac.sort.ArrayIndex merge(int,int,int)>($i9, q, $i10);

specialinvoke this.<com.cyberpointllc.stac.sort.Sorter: void changingSortHelper(java.util.Stack,com.cyberpointllc.stac.sort.ArrayIndex,int)>(indexStack, index, q);

⊤

⊥

DB

Fig. 4: LPCG shows branch nodes including the termination
node in red and the differential branch node (labeled DB) with
the ACV on one branch.

the purpose of this empirical study is to evaluate how well
these artifacts serve as a lens to examine and understand
loops in real-world software. The evaluation is done from
different perspectives. The conformance of a loop to a Loop
Termination Pattern (LTP) indicates that the loop terminates
according to the pattern. It is then important to evaluate
whether these patterns cover a large percentage of loops in real-
world software. Abstractions create a compact representation
to manage the complexity of a loop and its properties. So, as
another perspective it is important to evaluate how significant
is the simplification due to the abstraction when it is applied
to real-world software.

This empirical study covers 18 challenge apps provided
by DARPA (of which Gabfeed3 is an app presented as a
case study) and 4 open source libraries (Apache Commons
IO (2.4), Apache Commons Collections (4.4.0), Apache Com-
mons Lang3 (3.3.2), JGraphT (0.9.1)). Altogether, they include
5448 loops. While presenting the results, we refer to the
challenge app loops as C-loops and the loops from the open-
source libraries as L-loops. There are 3852 C-loops and 1596
L-loops.

A. Usefulness of Loop Termination Patterns (LTPs)
We evaluate usefulness of LTPs with respect to the fol-

lowing three questions about usefulness of LTPs: (1) What



#TC median 90th %ile 99th %ile max.
c-loops 1 2 6 14
l-loops 1 2 6 16

TABLE II: Distribution of C-loops and L-loops with respect
to number of termination conditions (TC).

percentage of loops are covered by LTPs? A large coverage
is desirable for LTPs to be considered useful in practice.
(2) Among the loops covered by LTPs, what percentage of
loops are complex cases for termination? LTPs are particularly
useful if they can find complex cases of loop termination. (3)
Among the complex loops covered by LTPs, what complexity
characteristics are at play? LTPs can be insightful if they
reveal the complexity characteristics and the dominance of
those characteristics among the multitude of loops. We present
results to answer these questions through an empirical study.

For the first question about the coverage of loops using
LTPs, we observed that 73.31% of the C-loops and 88.30% of
the L-loops are covered by LTPs. Thus, the study shows that
LTPS are are useful to prove termination of a large portion of
loops in the real-world software.

For the second question about the complex cases of loops,
many different factors contributing to the complexity can
be studied. We present here the results for a predominant
complexity factor. It is especially time-consuming and error-
prone for the analyst to examine and understand the cases that
require inter-procedural analysis. The inter-procedural analysis
can be due to multiple issues such as loops with nesting that
goes across functions, or due to an inter-procedural data flow
from input to the loop termination condition. Among the loops
covered by LTPs, 86.06% of the C-loops and 89.44% of the L-
loops require inter-procedural analysis. Thus, the study shows
the LTPs are particularly useful because they are useful to
prove complex cases of loop termination.

For the third question about complexity characteristics
handled by the LTPs, we present results for different attributes
of the inter-procedural dependencies handled by the LTPs. The
dependencies could involve a field of an object, a parameter of
a method, or a return value at a callsite. Among the C-loops
covered by LTPs with inter-procedural dependencies, 16.81%
loops have dependencies through a field of an object, 3.19%
loops have dependencies through a method parameter, and 80%
have dependencies through a return value at a callsite. The
corresponding percentages for the the L-loops are respectively
11.62%, 5.67% and 82.71%.

Unlike the dependencies through a field of an object,
dependencies through a return value at a callsite are more chal-
lenging because they require an examination of the multitude
of control flow paths through the methods invoked at those
callsites. Thus, LTPs are significantly useful; not only do they
find a large percentage of difficult loop termination cases, but
also the cases that are quite complex because of the need for
inter-procedural analysis and the path analysis.

B. Usefulness of Loop Characterizations
Loop characterizations are helpful in bringing out various

complexities associated with a loop. We studied distribution of
the loops with respect to following five characteristics in order
to evaluate the usefulness of loop characterization. 1) loop
monotonicity, 2) number of callsites in a loop, 3) number

#paths median 90th %ile 99th %ile max.
c-loops 1 6 72.7 229432
l-loops 1 3 21 324

TABLE III: Distribution of C-loops and L-loops with respect
to number of paths in the loop body.

Cyclomatic median 90th %ile 99th %ile max.
c-loops 3 14 38 59
l-loops 3 7 16.5 30

TABLE IV: Distribution of C-loops and L-loops with respect
to cyclomatic complexity.

of termination conditions of a loop, 4) number of control
flow paths in a loop, 5) cyclomatic complexity of a loop.
Collectively, these characterizations help the analyst to isolate
complex loops for further scrutiny. Let us discuss empirical
study results that show usefulness of loop characterizations.
Loop Monotonicity: Monotonicity is an indicator of loop
complexity, not being monotonic in general reflects that it
is hard to show that the loop terminates. The results show
that 64.3% C-loops and 55.1% L-loops are monotonic. This
indicates that monotonic loops are more prevalent than non-
monotonic loops and hence can be used as a effective filtering
mechanism.
Number of Callsites in Loops: The presence of multiple
callsites makes it difficult to reason about loop behavior. The
results show that 18.4% C-loops and 30.8% L-loops do not
contain any callsites. This indicates inter-procedural analysis
is needed to reason about a majority of the loops.
Number of Terminating Conditions: The number of termina-
tions conditions can be useful as loops with significantly large
number of termination conditions are generally difficult to
reason about. The Table II shows the median, 90th percentile,
99th percentile, and the maximum with respect to the number
of termination conditions per loop. For both the C-loops and L-
loops, 90% of loops have at most two termination conditions
and 99% of loops have six or fewer termination conditions.
However, a few loops have a large number of termination
conditions. One C-loop has 14 termination conditions, and one
L-loop has 16 termination conditions.
Number of Control Flow Paths: A large number of control
paths indicate a large number of different behaviors, which
makes it difficult to reason about a loop’s termination. The
Table III shows the median, 90th percentile, 99th percentile,
and the maximum with respect to the number of control flow
paths per loop. For both the C-loops and L-loops, 50% of
loops have one path. The 90th and 99th percentile values are
considerably higher 6 and 72 for the C-loops compared to 3
and 21 for the L-loops. One C-loop has 229432 paths, and
one L-loop has 324 paths. Thus, the C-loop collection has a
significantly large percentage of loops with a large number of
control flow paths compared to the L-loop collection.
Cyclomatic Complexity: As a comparison to our other loop

complexity measures we study the cyclomatic complexity [15],
which is a quantitative measure of the number of linearly
independent paths through a program’s source code, computed
using the control flow graph. The cyclomatic complexity
distribution shown in Table IV is computed by using the
control flow graph for each loop. The path metric in TableIII
is also computed using the same set of graphs. The cyclomatic
complexity is an approximation of our path metric.



C. Usefulness of Abstractions
To detect ACVs, the analyst must comprehend complex

loop behaviors including loop termination, whether the ter-
mination is affected by input, the multitude of control flow
paths with behaviors relevant to ACVs, and the paths with
differential behaviors. Abstractions are intended to create com-
pact representations of loops with the goal of simplifying the
task of comprehending loop behaviors and enabling efficient
automated analysis to characterize loops. The usefulness of
these abstractions should be measured by the compactness
they can achieve while maintaining the information essential
to these behaviors.

The abstractions capture and represent the behavior infor-
mation through graphs. Using V + E, as the size of a graph
where V and E are respectively the number of nodes and the
number of edges, we measure the compactness by comparing
the graph size for the original program graph compared to the
abstraction graph. We use the TDG the size of the data flow
graph from which the TDG is derived, and we use for LPCG
the size of the control flow graph from which the LPCG is
derived. The results computed as averages are as follows:
• For each C-loop the original data flow graph is 4.3 times

bigger than the TDG. For each L-loop the original data flow
graph is 2.3 times bigger than the TDG.

• For each C-loop the original control flow graph is 2.8 times
bigger than the LPCG. For each L-loop the original control
flow graph is 1.5 times bigger than the LPCG.

The significantly higher reductions for the C-loops indicate
that the developers of the challenge apps may have introduced
artificial complexity to make it difficult to locate the vulnerable
code segments. However, the abstractions can remove the
irrelevant complexity.

We studied the correlation between the number of termi-
nation conditions of a loop and the percentage compaction
achieved by the TDG and LPCG. The correlation coefficient
between the reduction achieved by the TDG and the number of
terminating conditions is 0.04 and the correlation coefficient
between the reduction achieved by the LPCG and the num-
ber of termination conditions is -0.07. Thus, the compaction
achieved by these abstractions has very little correlation to the
number of termination conditions. Similarly, we found that the
compaction has very little correlation to the number of paths.
This is expected because compaction depends on the number
of relevant nodes and that number is not correlated to either
the number of termination conditions or the number of paths.

VIII. RELATED WORK

We discuss related work in three categories: static analysis
for extracting high level semantic patterns from loops, model-
based formal verification for extracting loop invariants and
classifying loops, and tools to analyze domain-specific loops.

Semantic patterns: Existing work on extracting semantic loop
patterns [16], [17], [18] can classify loops based on a high-
level specification of their semantics, e.g., whether a loop
involves a search, selection, or initialization of a data structure.
While these patterns are useful in general for understanding the
high level functionality, they cannot filter out loops reachable
from a particular user input, or classify loops based on their
dependence on local and inter-procedural data, which are
critical aspects to hypothesizing ACVs.

Formal verification, Symbolic Analysis and Loop Summa-
rization: Formal verification approaches to derive loop invari-
ants or estimate loop iteration counts [19], [20], [21], [22] have
been used for several applications including WCET (worst-
case execution time). Many techniques have been proposed to
summarize the loop effect [7], [23], [24], [25] using symbolic
analysis. LESE [26] aim to compute iteration count precisely
using symbolic execution and use it to infer the loop effect.
The technique in [24] generates pre- and post-conditions as
loop summaries using dynamic symbolic execution. These
techniques focus on single-path loops. Proteus [7] classifies
complexity of the loop execution for multi-path loops into
four types based on conditions on the paths. All the above
techniques rely on the presence of an induction variable in the
loop. In contrast, our analyses characterize loops with respect
to any variable that affects termination (which subsumes
induction variables), and apply to loops with single or multiple
paths.

Program Abstractions: Program Dependence Graphs
(PDG) [27], [28] have been traditionally used to abstract data
and control dependences of a program. The information in
the TDG and LPCG abstractions collectively contain all the
information in the PDG that is relevant to the termination of
a loop. The TDG uses a kind of taint analysis for reaching
definitions [29] to track the flow of information from various
sources to the termination condition (sink). This differs from
the traditional taint analysis used for PDG construction in
that our taint analysis also tracks flows from callsites to
their return values to capture potential dependencies through
callsites to the termination conditions. In addition, the TDG
classifies the inter-procedural dependencies based on the
source type. This information can help alert analysts about
additional analysis that needs to be done to audit the loop
for ACVs. The LPCG differs from the PDG in the control
dependence aspect in that it elides equivalent paths from the
loop header to the termination conditions.

Domain-specific analysis: The most closely related work to
ours is the analysis of Android loops by CLAPP [30]. CLAPP
analyzes loops to extract information about the operations that
influence and control the number of iterations of a loop, as well
as operations that constitute the loop’s body. For the security
aspect, CLAPP identifies loops with calls to a set of high-risk
APIs (which can be captured using subsystems interactions
in our approach), loops whose iterations depend on certain
external data sources such as network data, and potentially
infinite loops (which can be inferred using the number of
terminating conditions from our loop catalog). However, like
all the other approaches, CLAPP does not support interactive
visualization of key aspects of a loop, which is crucial in
helping analysts comprehend loops and hypothesize ACVs in
them.

IX. CONCLUSIONS

The paper describes foundational research and tools to
automatically characterize and interactively reason about loops
with an overarching goal of detecting ACVs that emanate from
loops. We illustrate use of our analyses and tool chain to detect
an ACV in a DARPA challenge app. We present an empirical
study to bring out the usefulness of our characterizations in
real-world software.

With the major exception of work by Waters [16], the



prevalent research is mostly focused on developing completely
automated analyses for algorithmic complexity. However, auto-
matically proving termination of an arbitrary loop is equivalent
to the halting problem. To the best of our knowledge, this is
the first work that that has proposed an integrated human-in-
the-loop approach to loop analysis with novel abstractions,
patterns, characterizations, and interactive visual querying
mechanisms.

A human-in-the-loop approach is aimed at amplifying the
intelligence [12] of a human analyst to enable him to detect
vulnerabilities. This poses quite different demands on automa-
tion, and our contributions provide a first step to address the
challenges posed. The automation needs to offer the freedom
to the analysts to compose different analyses to drill deeper se-
lectively. In the context of open-ended possibilities for ACVs,
the composability is especially critical where the analysis
must be adapted to pursue the possibilities that the analyst
deems plausible. To this end, our tools enable: (a) creation of
filters based on automatically generated characterizations, and
(b) visual querying mechanism designed to compose relevant
program artifacts interactively.

In the future, we plan to undertake user studies to evaluate
how our interactive tools actually impacted the ability of
analysts to audit and detect ACVs in the challenge apps.
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