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Abstract—Immutability analysis is important to software test-
ing, verification and validation (V&V) because it can be used
to identify independently testable functions without side-effects.
Existing tools for immutability analysis are largely academic pro-
totypes that have not been rigorously tested for accuracy or have
not been maintained and are unable to analyze programs written
in later versions of Java. In this paper, we re-implement two
prominent approaches to inferring the immutability of an object:
one that leverages a points-to analysis and another that uses a
type-system. In addition to supporting Java 8 source programs,
our re-implementations support the analysis of compiled Java
bytecode. In order to evaluate the relative accuracy, we create
a benchmark that rigorously tests the accuracy boundaries of
the respective approaches. We report results of experiments on
analyzing the benchmark with the two approaches and compare
their scalability to real world applications. Our results from the
benchmark reveal that points-to based approach is more accurate
than the type inference based approach in certain cases. However,
experiments with real world applications show that the points-to
based approach does not scale well to very large applications and
a type inference based approach may offer a scalable alternative.

Toolbox: https://ensoftcorp.github.io/ immutability-toolbox
Benchmark: https://kcsl.github.io/ immutability-benchmark

I. INTRODUCTION

Many applications in software analysis, testing and verifi-
cation call for tools that analyze the immutability of objects.
For instance, in software testing it is useful to first identify
independently testable functions that do not have side-effects
(according to Sălcianu and Rinard [1], a function has a side-
effect if it mutates an object that existed prior to its invocation),
as it allows the tester to focus on more complex areas of
the codebase. For security verification, immutability analysis
is important because information leakage via space or time
based side channels is primarily enabled through the presence
of functions with observable side-effects [2], [3]. Furthermore,
knowing that an object is immutable is particularly useful in
verifying concurrent programs because an immutable object
cannot be corrupted by thread interference.

An object is mutated when any of the object’s fields are
updated, i.e., a field assignment is made after the object is
initialized. In Java, an object can only be accessed through a
reference, so immutability analysis boils down to answering
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the question: given code C and reference R, is the object O
referenced by R mutated in the code C?.

A. Immutability in Practice

An important question to ask is whether a dedicated im-
mutability analysis is needed, given that Java already offers a
mechanism for enforcing object immutability using the final
keyword, which would require all fields (and the fields of
fields) of an object to be marked final. First, marking an
object immutable using the final keyword is impractical
for general purpose programming, because it would lock the
object’s initialized state and prevent any further updates to the
initialized object. Instead, it is more common for developers
to define mutable object types, but treat particular instances
of the object as immutable objects by simply not updating
the object’s fields. In fact, many IDEs encourage this design
pattern by offering automatic generation of getter and setter
functions for object fields. Second, our survey of 274,504 Java
projects on Github using the Boa [4] framework showed that
38.45% of all types are potentially mutable having at least one
non-final field [5]. Finally, there is no language mechanism for
enforcing the immutability of array components. Hence, there
is a need for reliable tools for recovering the immutability of
objects, with applications to software testing and V&V.

B. State-of-the-art approaches

Tools published in academic research related to immutabil-
ity analysis [1], [6], [7], [8], [9] use one of two prominent
approaches to immutability analysis: one employs a points-to
analysis to infer immutability and another uses a type based in-
ference system. A points-to based immutability analysis takes a
top-down approach by first resolving aliasing relationships and
then using them to identify mutations to the aliased objects.
The type inference based immutability analysis takes a bottom-
up approach by identifying mutation at field assignments, and
inferring the objects that may be affected by the mutation.

Our survey of the state-of-the-art for these two approaches
to immutability analysis corroborates the findings of others [6],
[7] that many tools only work small examples or cannot
scale to the demands of realistic software [6] [7]. Moreover,
the existing tools are largely academic prototypes that have
not been rigorously tested for accuracy or have not been
maintained and are unable to analyze programs written in later
versions of Java. In particular, like many static analyses, a
fully-precise immutability is intractable in general (e.g it may
require a fully-precise pointer or alias analysis [10]), which
forces tool implementers to make design choices or choose
abstractions that necessarily affect the accuracy of their results.
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The status of the current tooling prompts the need for (a) a
robust implementation of the immutability analysis approaches
that supports Java 8 and compiled Java bytecode, as well
as (b) a benchmark that rigorously tests each approach for
accuracy in the presence of various program features and
analysis challenges.

C. Contributions

1) We build a robust immutability analysis toolbox that
incorporates the transfer of two academic approaches for
immutability analysis into an industry grade open source
tool (the immutability-toolbox). The immutability-toolbox
is built on top of a proven industry grade program analysis
platform that lends itself to be composed with other
software testing and verification tasks. The immutability-
toolbox supports direct analysis of Java 8 source programs
and compiled Java bytecode. Both implementations are
capable of partial program analysis (analyzing libraries).

2) We develop a reusable, extensible benchmark for assess-
ing accuracy boundaries of immutability analysis tools.
The benchmark includes individual test cases that test
specific program analysis challenges such as aliasing
patterns, polymorphism, as well the minimal set of basic
assignments that all tools must handle to correctly infer
immutability. The novelty of the benchmark is that each
testcase is: independently analyzable, human comprehen-
sible, and contains an executable proof of correctness.

3) We use our benchmark to perform an in depth evaluation
of the accuracy boundaries for each approach, and a set
of real world applications to evaluate their scalability.
In addition, we present the first detailed comparison of
results of a points-to based immutability analysis and a
type based immutability analysis.

II. ACADEMIC TRANSFER CHALLENGES

In this section we present an overview of the existing
tools for immutability analysis, and then motivate the need
for an industry-grade experimentation toolbox for immutability
analysis. Given multiple state-of-the-art approaches to im-
mutability analysis, the toolbox is intended to enable industry
practitioners to assess the relative trade-offs between these ap-
proaches applied to their domain specific analysis environment.
The toolbox implements two prominent approaches, which we
later use to critically evaluate the strengths and weaknesses of
each approach in terms of accuracy, scalability and practical
usability of the results. We describe the technical challenges
we faced in transferring these approaches into an industry-
grade open source immutability toolbox that can handle real
world applications.

A. Overview of Existing Approaches and Tools

Existing approaches to immutability analysis can be clas-
sified into two categories: (1) those that that first perform a
pointer analysis use the points-to results to infer immutability
of objects, and (2) those that utilize a special formalism
such as a type-system to define rules to infer immutability
types of objects. ReImInfer (and its ancestor Javarifier) uses a
declarative type-system based approach and applies predefined
type inference rules to infer immutability types of references.
In contrast, JPPA first performs a points-to analysis to derive

TABLE I: Immutability Tool Tradoffs

Tool Input Supports Library Analysis Notes
ReImInfer Source Yes Only supports Java 6
JPPA Source No Research prototype

the immutability of references using the computed points-to
sets. A summary of the existing immutability analysis tools
based on their support for analyzing Java source and Java
bytecode, partial program analysis, and scalability to real world
applications are presented in Table I.

Limitations of existing tools: JPPA is a research prototype
implemented as compiler plugin that is no longer maintained.
ReImInfer (and Javarifier) currently only supports programs
compiled in Java 6 or earlier and does not report results for
local references. Moreover, all tools expect Java source as
input and do not natively support analysis directly on Java
bytecode (at least not without some modifications). The lack
of support for bytecode makes their applicability limited when
source is not available. Given the above limitations, we decided
to re-implement the type-inference based and points-to based
approaches to immutability analysis for industry-grade use.

B. Analysis Platform for Immutability Toolbox

Immutability analysis is not used as an independent tool
for software testing and V&V. Rather, immutability analysis is
typically used to isolate parts of code without side-effects (e.g.,
by identifying pure methods), so that they can be independently
tested. Hence, results of an industry-grade immutability anal-
ysis tool should be readily composable with other analyses. In
addition, an industry-grade immutability analysis tool should
support the analysis of partial programs as well as the analysis
of bytecode when source is not available. Finally, the analysis
should integrate seamlessly into the standard development
environment and be easily inspected by a human. In summary,
we expect any industry-grade implementation of immutability
analysis to: provide results that are readily composable with
other analysis, accepts Java source and bytecode as input, and
supports easy human inspection of results.

Given the above considerations, we chose to implement our
immutability analysis on top of the Atlas program analysis
platform [11], which (a) provides native support for Java
source and Java bytecode, (b) enables easy visual inspection
of analysis results within the Eclipse IDE, and (c) supports
on-demand composition of results from multiple analyses.
Atlas is a mature and scalable program analysis platform for
developing industry grade implementations of sophisticated
algorithms for software verification, including safety-critical
software verification tasks in automotive, avionics, and other
industries requiring software V&V. In particular, Atlas has
been used to build commercial products such as Modelify
that recovers Simulink models from embedded C code [12].
Atlas has also been used by academic researchers to verify
and discover bugs in the Linux Kernel [13], and as part of
DARPA projects to detect novel and sophisticated malware in
the Android ecosystem [14], and detect algorithmic complexity
and side channel vulnerabilities in Java bytecode [15]. At
its core, Atlas is a queryable, directed, graph database of
attributed nodes and edges representing program artifacts and
their relationships. Another specific advantage of using Atlas
is its eXtensible Common Software Graph (XCSG) schema



that provides semantically precise definitions for all possible
program artifacts.

We next describe the specific challenges we faced in
transferring the type-inference based and points-to based aca-
demic approaches into an industry-grade immutability-toolbox.
The immutability-toolbox which contains an type inference
based implementation and points-to based implementation for
immutability analysis is available online as open source project
at https://ensoftcorp.github.io/immutability-toolbox.

C. Type Inference Based Approach

Approach Overview: The approach implemented by ReImIn-
fer leverages a small auxiliary type system, a set of inference
rules, and a type checker to infer the immutability of each
object referenced in a program. The type system consists of
three types with a hierarchy of READONLY :> POLYREAD :>

MUTABLE, with READONLY as the most generic (super) type and
MUTABLE as the most specific (sub) type. A type can only be
assigned to the same type or a supertype. The POLYREAD type
acts as a halfway point between the READONLY and MUTABLE

types to account for mutations made in one calling context but
not another. For instance a mutation to a field in one method
does not imply that the field is mutated in every method that
accesses the field. By default references are assigned a set of all
three types, except for instance variables which are initialized
with the set READONLY and POLYREAD. The inference rules are
iteratively applied to each assignment statement in the program
using a type checker to remove unsatisfiable types until a fixed
point is reached. For instance in a basic assignment x = y, the
TASSIGN inference rule asserts the constraint that the types on
y should be less than or equal to the types on x. After fixed
point is reached, the maximal type is selected from each set as
the final type of the reference. This approach supports whole
and partial program analysis with O(3∗n) worst case number
of iterations, where n is the number of assignments [6].

Transfer Challenges: First, the type inference based approach
is declarative, and proposes a fixed point algorithm. The type
inference rules describe “what” the types should be assigned,
but does not provide details on “how” the algorithm could
be implemented. Second, the authors present a core calculus
and omits features not strictly necessary from the formalism
for describing the inference rules. A complete detailing of the
inference rules is not published, but a reference implementation
supporting Java 6 program constructs is provided. For example,
the published rules do not describe how a callsite without an
assignment (e.g. x.foo()) would be handled (in practice, a
dummy assignment READONLY reference is created to hold
the result of the callsite). Third, when we consulted the im-
plementation of ReImInfer to recover the undocumented type-
inference rules, we found that in special cases the tool deviated
from the approach stated in the paper. For example, there are
cases when a MUTABLE type is added at runtime to an instance
field, which contradicts statements in the [6], [7] papers that
instance fields cannot be MUTABLE and that types are only ever
removed. We verified this by reproducing the results with the
original tool release (version 0.1.2) and observing that the tool
reported MUTABLE instance fields. In addition, we observed
several untyped references as well as unsatisfiable constraints
for the reported benchmark applications. While a later paper
[8] by the same authors does present a type system where

instance variables can only be {READONLY,MUTABLE}, version
0.1.2 of the tool produced the same results presented in the
OOPSLA 2012 [6] paper. Since, there is a series of papers
[6], [7], [8], [9] which make improvements to the formalisms,
but all papers reference the same code repository, it is difficult
to recover and consult the implementation corresponding to a
particular paper.

Addressing Challenges: Our primary source of clarifications
to the implementation came from reaching out to the authors
who kindly provided additional details. While the reference
implementation leveraged a type checking framework, we
extracted the constraints implied by the inference rules and
built a dedicated constraint solver. We then leveraged the
Atlas XCSG schema to enumerate the context in which
mutations can happen and map each such mutation context
to the corresponding constraints. The above enumeration and
mapping were implemented using the native query language
for XCSG. This effort included making several optimizations
to our constraint solver, database queries, and result caching
strategies. In particular, since the type system only consists of
three types, it was possible to implementation our constraint
solver as a lookup table that stores precomputed constraint
results. Finally, in order to assert the correctness of the
implementation for individual mutation contexts, we decided
to develop a dedicated set of unit test cases which is described
in detail in Section III. The final implementation represented
over 8 weeks of full-time engineering effort by two software
developers1.

D. Points-to Based Approach

Approach Overview: Given the results of a points-to analysis
it is a straight-forward task to implement an immutability
analysis. There are many approaches to implementing points-
to analyses, but for this work we implement a standard 0-
CFA Andersen-style [16] pointer analysis (a context-insensitive
subset constraint based approach). This choice is motivated by
the fact that adding context sensitivity significantly increases
cost without necessarily significantly improving the precision
[17]. Given the pointer analysis, an immutability analysis only
requires a single iteration through each new allocation in the
program. For each new allocation the analysis determines if
any of the references to the new allocation were used to update
fields. If the a mutation occurred then all references to the new
allocation are marked mutable. Updates to array components
are treated as mutations to the array itself.

Transfer Challenges: There are two main challenges with
respect to implementing a points-to analysis with the ultimate
goal of computing immutability. First is the scalability of
the analysis. It is know that the worst case complexity of
an Andersen-style pointer analysis is O(n3) (where n is the
number of nodes in the assignment graph) [16]. Second is the
ability of the analysis to deal with partial programs (such as
libraries). Most analyses, including JPPA, deal with both of
these challenges by restricting the analysis to a main method
or a root set of program entry points. The analysis is therefore
restricted to a subset of the program, but cannot be performed
for partial programs.

1The immutability-toolbox was implemented by the first two authors of this
paper
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Addressing Challenges: We address the above challenges
in our points-to based immutability analysis implementation
as follows. First, to increase the accuracy of the pointer
analysis while maintaining scalability in practice, the im-
plementation supports flow-sensitivity, on-the-fly resolution
of dynamic dispatches, and a conservative tracking of flows
through array components, as well as applying propagating
subset constraints only based on type compatibility. Aside from
the typical optimizations in points-to analysis (e.g. collapsing
strongly connected components or using BDDs to store sub-
sets) the implementation caches results of heavily used graph
database queries such as subtype relationships. In addition,
for immutability analysis we disable the tracking of primitives
because they cannot be mutated.

To address the challenge of partial program analysis, the
points-to toolbox) allows the analysis to assume every new
allocation in the given code is feasible. This approach allows
us to build a points-to mapping between references and new
allocations even for partial programs at the cost of an increased
computational burden. However, even with the burden of
assuming all new allocations are feasible the points-to toolbox
analysis completes in under a second for applications under
30K LOC, although the approach is not feasible for very large
programs such as the full JDK. If the partial program analysis
requirement could be relaxed such that the analysis has access
to the whole program, but only needs to compute results for a
subset of the program then it would be worth mentioning that
recent work [18] in computing conservative points-to sets for
libraries may make this approach feasible even for very large
programs.

III. BENCHMARKING IMMUTABILITY ANALYSIS

The quality of software analysis tools can be evaluated
along two dimensions, namely accuracy and scalability. Scal-
ability is evaluated by testing the analysis tools on large real
world applications. Ideally, accuracy of a tool is evaluated
using a suite of test programs for which the ground truth
(correct analysis result for each test) can be computed, which
can then be compared with the results of the tool being tested.
However, in the case of immutability analysis, there is a lack of
a benchmark for which the ground truth is known. To cope with
this, existing tools such as ReImInfer evaluate their accuracy
using real world applications such as the DeCapo benchmark
[19], and then compare their results with the results produced
by previous tools and by manually inspecting the differences.

However, using real world software for evaluating the
accuracy has several limitations. First, real world software ap-
plications were not developed with the intent to systematically
test the accuracy boundaries (classes of inputs for which the
tool cannot be guaranteed to report accurate results) of the
tools and may miss important corner cases that are needed to
guarantee the correctness of a tool. To make matters worse, the
ground truth of the analysis result for real world software is
not known a priori. Nor is there a way to compute the ground
truth for reasonable sized real world applications. Second, even
if real software were to be used as a benchmark to evaluate
a tool, its inherent complexity makes it difficult to ascertain
why the analysis tool failed, to resolve discrepancies in the
results reported by different analysis tools, and to succinctly
communicate the accuracy challenge that a tool can or cannot
handle. Finally, since the accuracy can be independently tested

exhaustively, it is best to design simple reproducible test cases
with demonstrable ground truths that systematically test the
accuracy boundaries of analysis tools.

A. Desirable Properties of Benchmark Testcases

In this section, we describe our approach to creating a
benchmark that brings out the accuracy boundaries of the
tools and embeds the ground truth within the test programs to
evaluate the accuracy of the immutability analysis approaches.
Specifically, we have designed our benchmarks for immutabil-
ity analysis to contain test cases with the following desirable
properties.

• Independently Analyzable Each test case should be indi-
vidually testable, with all its dependencies encapsulated.
• Human-comprehensible The test cases should be simple

enough that developers and users can understand the accu-
racy boundaries of a tool by browsing the tests cases in
which the tool failed to produce correct analysis results.
• Annotated The test cases should be annotated to facilitate

programmatic querying of the answer key. This makes it
easy to write a test harness and evaluate whether a static
analysis tool answered correctly for a given test case.
• Executable The test cases should also be executable, with

its output serving as a proof of correctness of the test case’s
annotated answer key.
• Reproducible The test case should be deterministic and

bundled with an environment that easily reproduces the
results for a given implementation.
• Individually Citable To promote sharing of results, collab-

oration between researchers, and to support reproducibility,
each test case should be individually referable. The DOI
numbers for the benchmark (and its future versions) will be
available at https://kcsl.github.io/immutability-benchmark.
To cite a testcase, authors can specify the benchmark version
by citing its DOI, along with the testcase category and
number.

We next describe a benchmark containing the test cases
with the above properties that we created for evaluating
immutability analysis.

B. Basic Assignment Test Cases

We discuss a novel method to generate test cases for
covering basic assignments in Java that any immutability
analysis tool should be able to successfully analyze. These
test cases do not require the tool to resolve aliases in order
to pass. The novelty of our method of generating the basic
assignment test cases that have the above desirable properties is
twofold: (a) systematic: the test cases are generated by starting
from the assignments allowed by the language model, and (b)
exhaustive: every possible assignment within the Java language
is tested. Since an object can be mutated only through field
assignments, and aliasing is not considered, any immutability
analysis tool should be expected to pass these test cases.

To ensure systematic, exhaustive coverage of basic as-
signment cases, it is important to note that all mutations
occur as a result of an update (assignment after initialization)
to a field. Let us first consider updates to class variables,
instance variables, and array components of fields. Array fields

https://kcsl.github.io/immutability-benchmark


Listing 1: Basic Assignment Testcase
1 public class AGT117_This_Parameter {
2 @READONLY
3 public Test test = new Test();
4 public static void main(String[] args) {
5 new AGT117_This_Parameter().foo();
6 }
7 public void foo(){
8 System.out.println(test);
9 test.bar(test);

10 System.out.println(test);
11 }
12 }
13

14 class Test {
15 public Object f = new Object();
16 public void bar(Object p){
17 p = this; // no mutation
18 }
19 @Override
20 public String toString() {
21 return "Test [f=" + f + "]";
22 }
23 }

must be given special attention because there is no language
mechanism to enforce the immutability of array components
and updates to array components mutate the object containing
the array field. Fields can be categorized into three groups,
class variables, instance variables of another object instance,
and instance variables of “this” object instance. Finally, we
consider assignments involving stack variables, i.e. parameters
passed and returned values. The high level assignment patterns
can be represented succinctly as an assignment graph as shown
in Figure 1. Each node in the assignment graph corresponds to
a set of program artifacts that can be on the left hand side or
right hand side of an assignment2. Each edge in the assignment
graph can be instantiated multiple times, one for each pair of
program artifacts in the source and destination node to generate
a valid Java assignment. For instance, the downward edge to
the right side of the assignment graph generates assignments
from a final object, an Enum, a ‘this’ reference, a primitive
(byte, char, short, int, long, float, double, boolean), ‘null’ or
a String literal to a parameter. We enumerate all possible
assignment pairs from the assignment graph to produce a total
of 250 test cases.

Listing 1 shows the basic assignment test case correspond-
ing to the assignment of a ‘this’ reference to a parameter (line
17). Clearly, it is independently analyzable because there are
no third party dependencies, and a human readable can quickly
comprehend the specific language feature being tested. The test
also contains a main method that if executed prints the state of
the test object before and after the assignment on line 17 is
made in the bar(Object p) method invocation. Executing the
test case produces reproducible output that indicates indicate
the test field was not mutated. In this test, the assignment
to a parameter does not mutate the parameter and so the
test field is annotated with READONLY, which serves as an
answer key that can be readily verified. When possible, we
have designed the test cases to use only the necessary language
features and program artifacts required to create each test case.
In the above example, removal of any reference or method

2In the assignment graph, we intentionally do not consider inherited fields
of an object, i.e., references through the “super” keyword to avoid introducing
polymorphism challenges.

Fig. 1: Assignment Graph

would arguably compromise the desired properties of the test
case such as executability or human comprehensibility.

C. Complex Program Analysis Challenge Test Cases

In addition to the basic assignment test cases, we created
a set of manually curated test cases that involve complex
program analysis challenges. These test cases test the accuracy
of immutability analysis in the presence of aliasing, polymor-
phism and inheritance, open world assumptions, as well as
issues that may arise from conservative assumptions to deal
with array components and dynamic dispatch resolution. We
next describe how we generated test cases that involve aliasing
challenges. The other test cases involving polymorphism and
inheritance, array index sensitivity and path sensitivity are not
discussed here and can be found in the benchmark repository.

In the basic assignment test cases we defined a reference
test that was explicitly mutated in the code and the analysis
question was to correctly detect that test is mutated. In
contrast, in the aliasing test cases, we create an alias to a
reference test, and mutate the alias. The analysis question
is to detect that test is indirectly mutated via the alias.
In this category, there are four distinct aliasing patterns we
test for, which can be explained using the concept of an
aliasing chain. An aliasing chain is a sequence of explicit
assignments of one reference to another, e.g., the statements
b = a; c = b; creates the aliasing chain c → b → a. The
four patterns of tests we perform are: (a) test case contains
the aliasing chain a → test; (b) test case contains the
aliasing chain test → a; (c) test case contains the aliasing
chain a → b → test; and (d) test case contains the aliasing
chain test → b → a. In all the above cases, the test case
contains an explicit mutation to a, and analysis question asks
whether test is mutable. The first two patterns (a) and (b)
test whether mutations to an alias are propagated in either
direction of the aliasing chain, while (c) and (d) test whether
the analysis is also robust enough to detect mutations to aliases
are propagated over levels of the aliasing chain. Listing 2
shows a test case corresponding to (b). Further these four basic
aliasing patterns can be replicated by swapping the reference
a with all the typable references such as a field, parameter,
etc. Our test cases for aliasing are not exhaustive, and future
work exists to expand these tests in a systematic way, as we
have done for the basic assignment test cases.

Note that tests that address potential accuracy boundaries of
points-to analysis implementations would also be applicable to
testing immutability analysis implementations. In a feasibility



Listing 2: Aliasing Testcase
1 public class AT_002 {
2 @MUTABLE
3 public Test test;
4 public static void main(String[] args) {
5 new AT_002().foo();
6 }
7 public void foo() {
8 // aliasing pattern: test -> a
9 Test a = new Test();

10 test = a;
11 System.out.println(test);
12 a.f = new Object(); // test is mutated
13 System.out.println(test);
14 }
15 }
16

17 class Test {
18 public Object f = new Object();
19 @Override
20 public String toString() {
21 return "Test [f=" + f.toString() + "]";
22 }
23 }

study we performed to create systematic tests for points-to
analysis, available at https://github.com/kcsl/JPATS, we dis-
covered and reported an accepted bug in the Soot program
analysis framework [20]. In addition to the aliasing patterns,
it is also possible to generate test cases for various kinds
of dynamic dispatch and inheritance patterns, which would
specifically test an analysis for correctness on propagating
mutations through callsites. Our benchmark includes a few test
cases in this category. This also opens another area of future
work to create systematic test cases that systematically model
inheritance and dynamic dispatch patterns.

IV. EXPERIMENTS

To assess the industry-readiness of research prototypes
developed in academia, it is necessary to understand their rel-
ative tradeoffs with respect to accuracy and scalability. These
tradeoffs are non-trivial because research publications typically
do not include a precise definition of the accuracy boundaries
of the tool (i.e., cases where the tool is not guaranteed to
be accurate) and the practical limits of its scalability. We
perform experiments to help industry practitioners identify
these tradeoffs. Specifically, we answer the following research
questions.

RQ1 How accurate are the approaches based on their results of
analyzing the benchmark testcases? In the case of failures,
what insights can we derive about the relative strengths
and/or weaknesses of the approaches?

RQ2 How do the results compare in their reported mutations on
real world applications? Does one approach consistently
detect more mutations across all the applications tested?

RQ3 How does the performance of each approach scale on the
real world applications tested?

A. RQ1: Accuracy with respect to benchmark

We discuss the results of ReImInfer and our points-to
implementation on the basic assignment test cases and those
involving complex program analysis challenges.

Results of basic assignment test cases: Recall that we
generated a total of 250 basic assignment test cases, which
cover all possible Java language assignment patterns. These

tests ensure that an immutability analysis can correctly de-
tect mutations on direct references to an object instance.
As expected, both approaches (type-system based ReImInfer
implementation and our points-to based immutability-toolbox
implementation) correctly analyzed all of the 250 test cases.

Results of test cases involving complex program analysis
challenges: Test cases in this category required the analysis
to correctly detect mutations when the reference being tested
is involved in various aliasing patterns, in the presence of
polymorphism and inheritance, etc. (see Section III-C).

Aliasing: Our points-to based analysis passed test cases
corresponding to all the four aliasing patterns. ReImInfer
passed only two of the test cases, and failed on the two other
aliasing patterns: test → a (as shown in Listing 2) and
test → b → a (in both cases, ReImInfer could not detect
that test is mutated when a is mutated). From this result,
we derived the insight that one of the fundamental constraints
for the assignment x=y, the constraint x :> y does not
propagate mutations on y to x. With the understanding
that longer aliasing chains offer more opportunities for such
aliasing patterns to occur, we leveraged our points-to based
implementation for calculating the frequency of aliasing chains
of different lengths in a real world application TinySQL.
Figure 2 plots a histogram of this statistic, showing that such
cases are quite prevalent in practice. Specifically, for TinySQL
we estimated that cases of aliasing chains of length 2 or
more (47.12% of all aliasing chains detected by the points-
to analysis) present opportunities for incorrect detection of
mutations by ReImInfer.

Polymorphism and Inheritance: Another test case that ReIm-
Infer fails that the point-to implementation in the immutability-
toolbox passes, involves method overriding and is shown in
Listing 3. This test creates two subtypes A and B that
both override the base method foo in Test. Test.foo and
A.foo do not mutate the inherited field f, while B.foo does
mutate the field f. While the points-to based implementation
resolves dynamic dispatches on the fly, in ReImInfer a muta-
tion in an overridden method always observed as a mutation
in the overridden method and the base method (regardless of
the base method’s behavior).

Other challenges where both approaches failed: Finally, there
are a set of testcases in the benchmark that both approaches
fail on, which involve challenges such tracking mutations to a
specific array index or detecting mutations along conditional
paths (a mutation in one path but not in another is always
conservatively detected as a mutation).

B. RQ2: Comparison of results on real world applications

Experimental setup: We ran experiments on nine real world
applications, which is a subset of the original set of applica-
tions on which ReImInfer reported results [6]. We omitted the
java.lang and java.util JDK packages because the authors
did not specify the build version used in their experiments.
We omit the SPECjbb benchmark because it is a non-free
proprietary benchmark. We also omit the JOlden benchmark
because it primarily consisted of small toy examples, which are
not representative of typical real world applications. Finally,
we restrict our comparison to results reported by our points-
to based implementation and the original results reported
by ReImInfer (rather than our re-implementation) because it

https://github.com/kcsl/JPATS


Listing 3: Overrides Testcase
1 public class ST_005 {
2 public static Test test = new B();
3 public static void main(String[] args){
4 System.out.println(test);
5 test.foo(); // B.foo mutates test
6 System.out.println(test);
7 }
8 }
9

10 class Test {
11 protected Object f = new Object();
12 public void foo(){} // no mutations
13 @Override
14 public String toString() {
15 return "Test [f=" + f + "]";
16 }
17 }
18

19 class A extends Test {
20 @Override
21 public void foo(){} // no mutations
22 }
23

24 class B extends Test {
25 @Override
26 public void foo(){
27 this.f = new Object(); // mutates ’this’
28 }
29 }

Fig. 2: Alias Chain Lengths in TinySQL

differs in how it applies types to fields as we discuss in
Section II-C.

Comparison of reported mutations: Table II shows a
comparison of the analysis results based on the fraction
of references reported as READONLY vs. all other potential
mutations ( POLYREAD and MUTABLE) respectively by both
approaches. Interestingly, there was no single approach that
consistently detected more potential mutations than the other
across all the applications. Specifically, the ReImInfer reported
more potential mutations for htmlparser, xalan, commons-pool,
jdbm, jdbf, jtds, whereas our points-to based immutability-
toolbox reported more potential mutations for javad, ejc, and
TinySQL. This mixed trend can be explained by our previous
observation that ReImInfer fails to correctly detect mutations in
cases involving certain aliasing patterns and method overriding
patterns (as discussed in Section IV-A). In addition, this
discrepancy may also be attributed to ReImInfer’s conservative
assumptions that were not made by our points-to based analysis
(ReImInfer assumes that library methods outside of a default
set of pure methods always mutate objects).

To derive additional insights into where differences were
reported in the tools we investigated the detailed break down

of mutations on fields, method parameters, method identities,
and method returns for one application, namely TinySQL
(shown in Table III). Notice that the number of identifiable
references do not total to the same counts as reported by
ReImInfer. This is because, as the authors did when they
ported the applications to Java 6, we also added empty method
implementations to satisfy new interface contracts for Java
8 to analyze the applications with the immutability-toolbox.
As a result we have more parameters (including the implicit
‘this’ reference) and returns than were originally reported by
ReImInfer. Finally, we observed a discrepancy between the
results of the approaches in the number of POLYREAD and
MUTABLE fields reported across all applications. This is likely
because the implementation of ReImInfer allows MUTABLE

types on instance fields (contrary to the authors’ proposal in the
paper [6]), as we noted in Section II-C. In our points-to based
analysis, we follow the proposed type system of ReImInfer,
which does not allow MUTABLE types on instance fields.

C. RQ3: Scalability in practice

Given that no single approach dominates another in terms
of accuracy, scalability may become the deciding criteria
for the choice of an immutability analysis approach in an
industrial deployment. Table II shows the time in seconds
taken by ReImInfer and the cumulative time taken be the
immutability-toolbox’s points-to based immutability analysis
and client immutability analysis implementations. For the
analysis of small applications such as TinySQL, htmlparser,
javad, commons-pool, jdbm, jdbf, and jtds the points-to based
analysis performed significantly better. However, as the size
of the application grew past 38k lines of code, as was the
case for ejc and xalan, the type inference based approach
performed significantly better. This result indicates that the
type inference based approach is a clear winner for the
analysis of very large applications since a points-to based
analysis understandably becomes prohibitively expensive. It is
important to note however, that this comparison only applies
to immutability analysis using an underlying 0-CFA Andersen
style points-to analysis. The accuracy and scalability trade-offs
between several different points-to analyses have been well
researched [17], [21]. One direction for future work is to study
how the choice of points-to analysis impacts a points-to based
immutability analysis in terms of accuracy and scalability.

V. CONCLUSION

In this paper we re-implemented two prominent approaches
to immutability analysis, namely a points-to based and a type-
inference based approach. We presented the challenges we
faced in the academic transfer and how we addressed them.
In particular, our re-implementation of the points-to based
immutability approach involved modifying a well known static
analysis algorithm (0-CFA Andersen style pointer analysis),
our reimplementation of ReImInfer was more challenging be-
cause it required running several experiments and directly con-
versing with the original authors for clarifications to unstated
assumptions made in their papers. Our re-implementations
are built on top of a robust and well maintained program
analysis platform that provides native support for handling
the necessary language features for Java 8 source and Java
bytecode. We developed a benchmark to validate the basic



TABLE II: Immutability Analysis Results on Real World Applications

Application Lines of Code ReImInfer READONLY ReImInfer Time Points-to READONLY Points-to Time Immutability Analysis Time Total Time
TinySQL 31980 62% 15.1s 60.2% 1.7s 3.1s 4.8s
htmlparser 62627 56% 16.9s 59.4% 1.7s 3.5s 5.2s
ejc 110822 40% 66.2s 20.9% 371.6s 146s 517.6s
xalan 348229 61% 81s 73.9% 127.5s 504.7s 632.2s
javad 4207 69% 3.2s 34.2% 0.3s 0.6s 0.9s
commons-pool 4755 44% 3.8s 68.2% 0.2s 0.5s 0.7s
jdbm 11610 40% 5.9s 52.0% 0.3s 1s 1.3s
jdbf 15961 66% 9.6s 78.9% 1.0s 1.5s 2.5s
jtds 38064 56% 17.2s 59.5% 4.7s 6.7s 11.4s

TABLE III: ReImInfer vs. Points-to based Immutability Anal-
ysis on TinySQL *ReImInfer results are shown on top in gray
while our points-to based analysis results are shown below

TinySQL READONLY POLYREAD MUTABLE Total
124 1 132 257Field 138 109 10 257
703 2 264 969Parameter 772 0 221 993
970 62 529 1561Identity 937 0 743 1680
404 198 0 602Return 448 162 0 610

correctness of the approaches implemented, and to test the
accuracy boundaries inherent to each approach.

We learned that the amount of engineering work that is
involved in transferring an academic approach is surprisingly
large. Specifically, in the case of transferring academic work
that utilizes special formalisms for describing an analysis ap-
proach, seemingly innocuous assumptions not explicitly stated
in the paper, which may be obvious to the authors, may have
profound impacts on the accuracy of the approach. In addition
to posing challenges to implementers transferring the approach,
it is a problem if the consumers of an approach are not aware
of the practical accuracy vs. scalability tradeoffs made by the
approach.

Our experiments found that there was no clear winner
between the approaches. The points-to based analysis was a
winner in terms of accuracy, but the type based approach
scaled better to large applications at the cost of potential
false negatives. Our exercise of creating a benchmark brought
out the accuracy boundaries inherent in each approach and
provided precise examples of analysis challenges not handled
by an approach. The approach agnostic benchmark created in
this work can be used by industry practitioners to objectively
assess current and future immutability analysis approaches.
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