
Recent Trends in Program Analysis
for Bug Hunting and Exploitation

ben-holland.com

Recent Two Positive Trends in
Program Analysis for Bug Hunting

and Exploitation

ben-holland.com

$ whoami
• 2005 – 2010

• B.S. in Computer Engineering
• Internship: Wabtec Railway Electronics, Ames Lab, Rockwell Collins

• 2010 – 2011
• B.S. in Computer Science
• Internship: Rockwell Collins

• 2010 – 2012
• M.S. in Computer Engineering (Co-major Information Assurance)
• Internship: MITRE
• Thesis: Enabling Open Source Intelligence (OSINT) in private social networks

• 2012 – 2015
• Research Associate Assistant Scientist
• DARPA’s APAC and STAC programs

• Demands impactful and practical software solutions for open security problems
• Fast-paced, high-stakes, adversarial engagement challenges

• 2015 – Present
• Ph.D. in Computer Engineering
• Graduating: 2018 🤞🤞🤞🤞

3

Disclaimer

• Nobody is endorsing me to say any of the things I am about to say
• What I am going to say is my opinion and may be controversial among

experts
• I am somewhat unavoidably biased towards certain approaches
• I’ll probably ask more questions than I have answers
• I’ll probably even get a few things wrong…

How do we analyze a program?

• Two main camps
• Dynamic analysis

• Run the program with some inputs and see what it does
• Advantage: Everything we observe is feasible (we just saw it happen)
• Concern: Input space is HUGE
• Concern: Did we test the interesting inputs?

• Static analysis
• Don’t run the program, dissect the logic and examine program artifacts
• Advantage: Bird’s eye view of everything that could possibly happen during execution
• Concern: Number of program behaviors is HUGE
• Concern: Is it feasible to reach/trigger an artifact of concern?

• What are we looking for?
• Bugs: Memory corruption, rounding errors, null pointers, infinite loops, stack overflows, race

conditions, memory leaks, business logic flaws, …
• Not every issue translates to a crash!

Traditional/Dumb (Blind) Fuzzing

• Start with a test corpus of well formed
program inputs

• Apply random or systematic mutations to
program inputs

• Run program with mutated inputs and
observe whether or not the program
crashes

• Repeat until the program crashes
• Input space

• Reading data in a loops could make the input
space infinite

• There are 2n possible inputs for a binary input
of length n

Traditional
(blind) Fuzzer Program

inputs

crashes

Crash Inputs

This is about all we can do without
examining program artifacts…

Building a Static Analysis Tool

• Compiler: Lexer Parser AST Semant Code Generation
• Static Analysis: Lexer Parser AST Semant Graph of

Program Artifacts Graph Queries of Concerning Program
Relationships

• Demo Eclipse Plugin: http://ben-holland.com/AtlasBrainfuck/updates

http://ben-holland.com/AtlasBrainfuck/updates

Brainf*ck Language
Character Meaning

> increment the data pointer (to point to the next cell to the right).

< decrement the data pointer (to point to the next cell to the left).

+ increment (increase by one) the byte at the data pointer.

- decrement (decrease by one) the byte at the data pointer.

. output the byte at the data pointer.

, accept one byte of input, storing its value in the byte at the data
pointer.

[

if the byte at the data pointer is zero, then instead of moving
the instruction pointer forward to the next
command, jump it forward to the command after
the matching] command.

]
if the byte at the data pointer is nonzero, then instead of moving the
instruction pointer forward to the next command, jump it back to the
command after the matching [command.

• Designed by Urban Müller in
1992 with the goal of
implementing the smallest
possible compiler.

• Compiler can be implemented
in less than 100 bytes

• Implements a Turing machine
• https://en.wikipedia.org/wiki/Brainfuck

Brainf*ck (Hello World)

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---
.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.

Brainf*ck Lexical Analysis

Program: ++[>+[+]].
Program Tokens: INCREMENT INCREMENT LOOP_HEADER MOVE_RIGHT INCREMENT LOOP_HEADER INCREMENT
LOOP_FOOTER LOOP_FOOTER WRITE <EOF>

Brainf*ck Parsing Rules

Brainf*ck Parse Tree

Program: ++[>+[+]].

Brainf*ck Abstract Syntax Tree (AST)

Parse Tree(s) to AST

Brainf*ck AST to Program Graph

Parse Tree(s) to AST

• Brainf*ck Hello World Program
• Graph contains information necessary to

execute program
• This language should be simple to analyze

right???
• No variables, just tape cells
• How many behaviors could there be?

Elemental: A Brainf*ck Derivative

• github.com/benjholla/Elemental
• Goal is to be basic, not to be tiny
• Separates looping and branching
• New features to explore impacts of

modern language features

https://github.com/benjholla/Elemental

Counting Program Paths: Branching

• How many paths are there for n nested branches?

if(condition_1){
if(condition_2){

if(condition_3){
…
if(condition_n){

// conditions 1 through n
// must all be true to reach here

}
}

}
}

Condition 1

Condition 2

Condition n

…

false

false

false

false

true

true

true

true

n+1 paths!

Counting Program Paths: Branching

• How many paths are there for n non-nested branches?

if(condition_1){
// code block 1

}
if(condition_2){

// code block 2
}
if(condition_3){

// code block 3
}
…
if(condition_n){

// code block n
}

Condition 1

Condition 2

Condition n

false

false

false

true

true

true

…false true
2n paths!

Elemental: A Brainf*ck Derivative

• github.com/benjholla/Elemental
• Goal is to be basic, not to be tiny
• Separates looping and branching
• New features to explore impacts of

modern language features

https://github.com/benjholla/Elemental

Considering Loops

• Programs may have loops
• How many paths does this program have?
• Can we say if this program halts?

while(condition_1){
if(condition_2){

break;
}

}

Condition 1
false true

Condition 2
true false

The Halting Problem
Suppose, we could construct:
H(M, x) := if M halts on x then return true else return false

Then we could construct:
G(M, x) := if G(M, x) is false then return true else loop forever

But if we then pass G to itself, that is G(G,G), we get a
contradiction between what G does and what H says that G
does. If H says that G halts, then G does not halt. If H says
that G does not halt, then it does halt.

H cannot exist.

H
Decides yes/no if M halts on xinput x

program M

no

yes

G

input x

program M

yes
(halt)

Loop
Forever

Halt

Elemental: A Brainf*ck Derivative

• github.com/benjholla/Elemental
• Goal is to be basic, not to be tiny
• Separates looping and branching
• New features to explore impacts of

modern language features

• ‘?’ could pass control to any
function!

• ‘&’ could jump to any line!
• Goto labels with ‘?’ or ‘&’ could be

simulated with branching or loops
• These blur control flow with data

https://github.com/benjholla/Elemental

Positive Trend 1 – Address the Languages

• Data drives execution
• Data is half of the program!
• “The illusion that your program is manipulating its data is powerful. But it is

an illusion: The data is controlling your program.”

• Crema: A LangSec-Inspired Programming Language
• Giving a developer a Turning complete language for every task is like giving a

16 year old a formula one car (something bad is bound to happen soon)

Positive Trend 1 – Address the Languages

• Data drives execution
• Data is half of the program!
• “The illusion that your program is manipulating its data is powerful. But it is an

illusion: The data is controlling your program.”

• Crema: A LangSec-Inspired Programming Language (DARPA Pilot Study)
• Giving a developer a Turing complete language for every task is like giving a 16 year

old a formula one car (something bad is bound to happen soon)
• Apply principle of least privilege to computation (least computation principle)

• Computational power exposed to attacker is privilege. Minimize it.
• Try copy-pasting the XML billion-laughs attack from Notepad into MS Word if you want to see

why…

Scaling Up: Program Analysis for COOL

• Classroom Object Oriented Language (COOL)
• https://en.wikipedia.org/wiki/Cool_(programming_language)
• http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course

=Compilers

• COOL Program Graph Indexer
• Type hierarchy
• Containment relationships
• Function / Global variable signatures
• Function Control Flow Graph
• Data Flow Graph (in progress)
• Inter-procedural relationships:

• Call Graph (implemented via compliance to XCSG!)
• https://github.com/benjholla/AtlasCOOL (currently private)

https://en.wikipedia.org/wiki/Cool_(programming_language)
http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=Compilers
https://github.com/benjholla/AtlasCOOL

Program Analysis for Contemporary Languages

• http://www.ensoftcorp.com/atlas (Atlas)
• C, C++, Java Source, Java Bytecode, and now Brainfuck/COOL!

• https://scitools.com (Understand)
• C, C++ Source

• http://mlsec.org/joern (Joern)
• C, C++, PHP Source

• https://www.hex-rays.com/products/ida (IDA)
• https://binary.ninja (Binary Ninja)
• https://www.radare.org (Radare)

http://www.ensoftcorp.com/atlas
https://scitools.com/
http://mlsec.org/joern
https://www.hex-rays.com/products/ida
https://binary.ninja/
https://www.radare.org/

Data Flow Graph (DFG)
Example:
1. x = 2;
2. y = 3;
3. z = 7;
4. a = x + y;
5. b = x + z;
6. a = 2 * x;
7. c = y + x + z;
8. t = a + b;
9. print(t); detected failure

What lines must we consider if the value of t printed is
incorrect?
• A Data Flow Graph creates a graph of primitives and variables

where each assignment represents an edge from the RHS to
the LHS of the assignment

• The Data Flow Graph represents global data dependence at
the operator level (the atomic level) [FOW87]

Relevant lines:
1,3,5,6,8

Data Dependence Graph (DDG)

• Note that we could
summarize data flow on a per
statement level

• This graph is called a Data
Dependence Graph (DDG)

• DDG dependences represent
only the relevant data flow
relationships of a program
[FOW87]

Control Flow Graph (CFG)

What lines must we consider if the value of i printed is incorrect?
• A Control Flow Graph (CFG) represents the possible sequential

execution orderings of each statement in a program
• Data flow influences control flow, so this graph is not enough

Example:
1. i = readInput();
2. if(i == 1)
3. print(“test”);

else
4. i = 1;
5. print(i);
6. return; // terminate

detected failure

Relevant lines:
1,2,4

Control Dependence Graph (CDG)

• If a statement X determines whether a statement Y can be executed then statement Y
is control dependent on X

• Control dependence exists between two statements, if a statement directly controls
the execution of the other statement [FOW87]

Program Dependence Graph (PDG)
• Both DDG and CDG nodes are statements
• The union of a DDG and the CDG is a PDG

DDG CDG PDG

+ =

Program Slicing (Impact Analysis)

• Reverse Program Slice
Answers: What statements does this
statement’s execution depend on?

• Forward Program Slice
Answers: What statements could
execute as a result of this statement?

Example:
1. i = readInput();
2. if(i == 1)
3. print(“test”);

else
4. i = 1;
5. print(i);
6. return; // terminate

detected failure

Relevant lines:
1,2,4

Taint Analysis

How can we track the flow of
data from the source (x) to the
sink (y)?
• Neither DFG/DDG nor CFG/CDG

alone are enough to answer
whether x flows to y

• Taint = (forward slice of source)
intersection (reverse slice of sink)

https://github.com/EnSoftCorp/slicing-toolbox

https://github.com/EnSoftCorp/slicing-toolbox

Analysis Woes: Going Inter-procedural

• Function pointers and dynamic dispatches force us to solve data flow
problems to precisely identify inter-procedural control flows

• Class Hierarchy Analysis / Rapid Type Analysis
• Cheap but very conservative results

• Points-to Analysis
• A variable v points-to what data in memory? Knowing this we can more precisely

resolve
• Obtaining a perfect solution has been proven to reduce to solving the halting

problem…
• Expensive even for conservative results!!!

• Each level of precision adds an exponent
• Not really a lot to be gained (in my opinion)

https://github.com/EnSoftCorp/points-to-toolbox

https://github.com/EnSoftCorp/points-to-toolbox

https://ensoftcorp.github.io/call-graph-toolbox

https://ensoftcorp.github.io/call-graph-toolbox

A Spectrum of Program Analysis Techniques

Source: Contemporary Automatic Program Analysis,
Julian Cohen, Blackhat 2014

Symbolic Execution

• Replace concrete assignment values with
symbolic values

• Perform operations on symbolic values
abstractly

• At each branch fork the abstracted logic
• Dealing with path explosion problem is a challenge

• Utilize SAT/SMT solvers to determine if the
constraints are satisfiable for a path of interest

• Example: fail occurs if y * 2 = z = 12 is satisfiable
• Solve(y * 2 = 12, y), y = 6 satisfies the constraint
• Program crash occurs when read() returns 6

int f() {
...
y = read();
z = y * 2;
if (z == 12) {

crash();
} else {

printf("OK");
}

}

On what inputs does the code crash?

https://github.com/illera88/Ponce

https://github.com/illera88/Ponce

Concolic Execution

• A hybrid of dynamic analysis and symbolic execution
• Perform symbolic execution on some variables and concrete execution on other

variables
• Symbolic variables could be made concrete in order to:

• Move past symbolic limitations such as challenges in modeling the program environment
(example network interaction)

• Deal with path explosion problem and satisfiability problem by replacing difficult symbolic
values with concrete values to simplify analysis

• Pays cost in time for symbolic computations and execution time of program
• Several well known tools:

• Angr - http://angr.io
• KLEE - https://klee.github.io
• DART - https://dl.acm.org/citation.cfm?id=1065036
• CREST (formerly CUTE) - https://code.google.com/archive/p/crest
• Microsoft SAGE - https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf

http://angr.io/
https://klee.github.io/
https://dl.acm.org/citation.cfm?id=1065036
https://code.google.com/archive/p/crest
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf

Smart (Guided) Fuzzing

• Start with a test corpus of well formed
program inputs

• Apply random or systematic mutations to
program inputs

• Instrument the program branch points
• Run the instrumented program with

mutated inputs and 1) observe whether or
not the program crashes and 2) record the
program execution path coverage

• If the input results in new program paths
being explored then prioritize mutations of
the tested input

• Repeat until the program crashes

Guided Fuzzer Instrumented
Program

inputs

crashes

Crash Inputs

execution trace

Heuristics guide genetic algorithm to generate
program inputs that push the fuzzer deeper
into the program control flow, avoiding the
common pitfalls of fuzzers to only test
“shallow” code regions.

AFL (American Fuzzy Lop) Fuzzer

• Recognized as the current state of art
implementation of guided fuzzing

• Effective mutation strategy to generate new
inputs from initial test corpus

• Lightweight instrumentation at branch points
• Genetic algorithm promotes mutations of inputs

that discover new branch edges
• Aims to explore all code paths

• Huge trophy case of bugs found in wild
• 371+ reported bugs in 161 different programs as of

March 2018
• http://lcamtuf.coredump.cx/afl/

• A game of economics. AFL tends to “guess”
the correct input faster than a smart tool
“computes” the correct input.

http://lcamtuf.coredump.cx/afl/

DARPA’s Cyber Grand Challenge (CGC)

• “Cyber Grand
Challenge (CGC) is a
contest to build high-
performance
computers capable
of playing in a
Capture-the-Flag
style cyber-security
competition.”

https://www.darpa.mil/program/cyber-grand-challenge

https://www.darpa.mil/program/cyber-grand-challenge

DARPA’s Cyber Grand Challenge (CGC)

• Fully automatic reasoning to:
• Detect program vulnerabilities
• Patch programs to prevent

exploitation
• Develop and execute vulnerability

exploits against competitors

• No human players!

CGC Results (Reading Between the Lines)

• All teams published the same essential combination of strategies
• Guided fuzzing (nearly every team modified AFL)
• Symbolic execution to assist fuzzer sometimes aided by classical program analyses

(points-to, reachability, slicing, etc.)
• Some state space pruning and prioritization scheme catered to expected

vulnerability types
• Effective patches were more often generic patches which addressed the

class of vulnerabilities not the one-off vulnerability that was given
• Example: Adding stack guards for memory protection

• Competitor scores were close!
• The difference between 1st and 7th place was not substantial

• Classes of vulnerabilities were known a priori

Context Matters!

• Head problems vs. hand problems
• Design vs. implementation errors

• Implementation errors may be eventually largely eliminated with
advances in programming languages, compilers, theorem provers, etc.

• Security design problems tend to be closely tied to failures in threat
modeling, which is largely a human task

• Many security problems arise due to reuse of software in changing contexts
• Example: SCADA devices designed for isolated networks being placed on the internet

DARPA’s High-Assurance Cyber Military Systems
(HACMS) Program

• “formal methods-based
approach to enable semi-
automated code synthesis
from executable, formal
specifications”

• Creation of an
“unhackable” drone!

https://www.darpa.mil/program/high-assurance-cyber-military-systems

https://www.darpa.mil/program/high-assurance-cyber-military-systems

HACMS Results (Reading Between the Lines)

• Failures tended to stem back to human failures to fully account for
the attack model

• Example: Red Team debrief noted that Red team sent a radio reboot
command that dropped that shut off drone engines for 3 seconds (enough to
crash the drone). Blue’s response was “Oh! We didn’t think of that!”

• The “unhackable” drone produced by the program was not protected
from the later discovered Meltdown and Spectre exploits

DARPA’s APAC Program

• Automated Program Analysis For Cybersecurity (APAC)
• Scenario: Hardened devices, internal app store, untrusted contractors, expert

adversaries
• Focused on Android

https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

APAC Results (Reading Between the Lines)

• Is a bug malware? What if its
planted intentionally? We
know bug finding is hard…

• Bugs have plausible
deniability and malicious
intent cannot be determined
from code.

• Novel attacks have escaped
previous threat models.

• Need precision tools to
detected novel and
sophisticated malware in
advance!

APAC Example: DARPA’s Transformative Apps

• 55K lines of code

• Data gathering and relaying tool for military
o Strategic mission planning/review
o Audio and video recording
o Geo-tagged camera snapshots
o Real-time map updates based on GPS

APAC Example: DARPA’s Transformative Apps

@Override
public void onLocationChanged(Location tmpLoc) {

location = tmpLoc;
double latitude = location.getLatitude();
double longitude = location.getLongitude();
if((longitude >= 62.45 && longitude <= 73.10) &&

(latitude >= 25.14 && latitude <= 37.88)) {
location.setLongitude(location.getLongitude() + 9.252);
location.setLatitude(location.getLatitude() + 5.173);

}
…

}

One of several locations were GPS coordinates were modified.
This corrupts GPS coordinates if user is in Afghanistan/Pakistan!

Program Analysis, OODA, and YOU

• “Security is a process, not a product” – Bruce Schneier

Program Analysis, OODA, and YOU

“...IA > AI, that is, that intelligence amplifying
systems can, at any given level of available
systems technology, beat AI systems. That is,
a machine and a mind can beat a mind-
imitating machine working by itself.” –
Fred Brooks

You

Opponent

Our opponent
• Time
• Evolution of malware

Positive Trend 2 – Employ Human Reasoning

• DARPA Programs on the verge
• Computers and Humans Exploring Software Security (CHESS)
• Explainable Artificial Intelligence (XAI)

• Let human’s do what humans are good at
• Let machines do what machines are good at
• Enable collaboration between the two

Your job in security is not going away soon…

Your job in security is not going away soon…
…probably.

(but it is an exciting field)

Activity: Does this program contain a vulnerability?

#include <stdio.h>
int main(int argc, char *argv) {

char buf[64];
strcpy(buf, argv[1]);
return 0;

}

Activity: Does this program contain a vulnerability?
#include <stdio.h>
int main(int argc, char *argv) {

char buf[64];
a = read_user_input();
b = read_user_input();
…
if(a * b == c){
strcpy(buf, argv[1]);

}
return 0;

}

What if c is the product of two
large primes?

Then yes, but only if you know
the prime factorization…

Activity: Does this program contain a vulnerability?
#define BUFFERSIZE 200
int copy_it (char* input , unsigned int length){

char c, localbuf[BUFFERSIZE];
unsigned int upperlimit = BUFFERSIZE - 10;
unsigned int quotation = roundquote = FALSE;
unsigned int input_index = output_index = 0;
while (input_index < length){ c = input[input_index++];

if((c == '<') && (!quotation)){ quotation = true; upperlimit--; }
if((c == '>') && (quotation)){ quotation = false; upperlimit++; }
if((c == '(') && (!quotation) && (!roundquote)){ roundquote = true; }
if((c == ')') && (!quotation) && (roundquote)){ roundquote = false; upperlimit++; }
// if there is sufficient space in the buffer, write the character
if(output_index < upperlimit){ localbuf[output_index] = c; output_index++; }

}
if(roundquote){ localbuf[output_index] = ')'; output_index++; }
if(quotation){ localbuf[output_index] = '>'; output_index++; }
return output_index;

}

Activity: Does this program contain a vulnerability?
#define BUFFERSIZE 200
int copy_it (char* input , unsigned int length){

char c, localbuf[BUFFERSIZE];
unsigned int upperlimit = BUFFERSIZE - 10;
unsigned int quotation = roundquote = FALSE;
unsigned int input_index = output_index = 0;
while (input_index < length){ c = input[input_index++];

if((c == '<') && (!quotation)){ quotation = true; upperlimit--; }
if((c == '>') && (quotation)){ quotation = false; upperlimit++; }
if((c == '(') && (!quotation) && (!roundquote)){ roundquote = true; /* (missing) upperlimit--; */ }
if((c == ')') && (!quotation) && (roundquote)){ roundquote = false; upperlimit++; }
// if there is sufficient space in the buffer, write the character
if(output_index < upperlimit){ localbuf[output_index] = c; output_index++; }

}
if(roundquote){ localbuf[output_index] = ')'; output_index++; }
if(quotation){ localbuf[output_index] = '>'; output_index++; }
return output_index;

}

input = "Name Lastname < name@mail.org >
()
()" Source: Cracking Sendmail crackaddr Still a challenge for automated program analysis?

Activity: Does this program contain a vulnerability?
int main(int argc, char *argv[]) {

int64_t x = strtoll(argv[1], NULL, 10);
char buf[64];
if (x <= 2 || (x & 1) != 0)

return 1;
int64_t i;
for (i = x; i > 0; i--)

if (foo(i) && foo(x - i))
return 1;

strcpy(buf, argv[2]); // reachable?
}

int foo(int64_t x) {
int64_t i, s;
for (i = x – 1; i >= 2; i--)

for (s = x; s >= 0; s -= i)
if (s == 0)

return FALSE;
return TRUE;

}

Activity: Does this program contain a vulnerability?
int main(int argc, char *argv[]) {

int64_t x = strtoll(argv[1], NULL, 10);
char buf[64];
// x is an even number that is greater than 2
if (x <= 2 || (x & 1) != 0)

return 1;
// x can be expressed as the sum of 2 primes
int64_t i;
for (i = x; i > 0; i--)

if (is_prime(i) && is_prime(x - i))
return 1;

strcpy(buf, argv[2]); // reachable?
}

int is_prime(int64_t x) {
int64_t i, s;
for (i = x – 1; i >= 2; i--)

for (s = x; s >= 0; s -= i)
if (s == 0)

return FALSE;
return TRUE;

}

Answer: No for all 32 bit integers, but
unknown for all 64bit integers…

Goldbach's conjecture:
275+ year old unsolved math problem

Thanks!

• Questions?

ben-holland.com

https://ben-holland.com/

	Recent Trends in Program Analysis for Bug Hunting and Exploitation
	Recent Two Positive Trends in Program Analysis for Bug Hunting and Exploitation
	$ whoami
	Disclaimer
	How do we analyze a program?
	Traditional/Dumb (Blind) Fuzzing
	Building a Static Analysis Tool
	Brainf*ck Language
	Brainf*ck (Hello World)
	Brainf*ck Lexical Analysis
	Brainf*ck Parsing Rules
	Brainf*ck Parse Tree
	Brainf*ck Abstract Syntax Tree (AST)
	Brainf*ck AST to Program Graph
	Slide Number 15
	Elemental: A Brainf*ck Derivative
	Counting Program Paths: Branching
	Counting Program Paths: Branching
	Elemental: A Brainf*ck Derivative
	Considering Loops
	The Halting Problem
	Elemental: A Brainf*ck Derivative
	Positive Trend 1 – Address the Languages
	Slide Number 24
	Positive Trend 1 – Address the Languages
	Scaling Up: Program Analysis for COOL
	Program Analysis for Contemporary Languages
	Data Flow Graph (DFG)
	Data Dependence Graph (DDG)
	Control Flow Graph (CFG)
	Control Dependence Graph (CDG)
	Program Dependence Graph (PDG)
	Program Slicing (Impact Analysis)
	Taint Analysis
	Slide Number 35
	Analysis Woes: Going Inter-procedural
	Slide Number 37
	Slide Number 38
	A Spectrum of Program Analysis Techniques
	Symbolic Execution
	Slide Number 41
	Concolic Execution
	Smart (Guided) Fuzzing
	AFL (American Fuzzy Lop) Fuzzer
	DARPA’s Cyber Grand Challenge (CGC)
	DARPA’s Cyber Grand Challenge (CGC)
	CGC Results (Reading Between the Lines)
	Context Matters!
	DARPA’s High-Assurance Cyber Military Systems �(HACMS) Program
	HACMS Results (Reading Between the Lines)
	DARPA’s APAC Program
	APAC Results (Reading Between the Lines)
	APAC Example: DARPA’s Transformative Apps
	APAC Example: DARPA’s Transformative Apps
	Slide Number 55
	Program Analysis, OODA, and YOU
	Program Analysis, OODA, and YOU
	Positive Trend 2 – Employ Human Reasoning
	Your job in security is not going away soon…
	Your job in security is not going away soon…
	Activity: Does this program contain a vulnerability?
	Activity: Does this program contain a vulnerability?
	Activity: Does this program contain a vulnerability?
	Activity: Does this program contain a vulnerability?
	Slide Number 65
	Activity: Does this program contain a vulnerability?
	Activity: Does this program contain a vulnerability?
	Thanks!

