
learn invent impact

Statically-informed Dynamic Analysis Tools to Detect
Algorithmic Complexity Vulnerabilities
16th IEEE Interna,onal Working Conference on Source Code Analysis and Manipula,on (SCAM 2016)
October 2, 2016

learn invent impact

Acknowledgement: Team members at Iowa State University and EnSoft, DARPA contracts FA8750-12-2-0126 & FA8750-15-2-0080

Benjamin Holland, Ganesh Ram Santhanam, Payas Awadhutkar, and Suresh Kothari
Email: {bholland, gsanthan, payas, kothari}@iastate.edu

learn invent impact

o  DARPA Space/Time Analysis for Cybersecurity (STAC) program
⁻  Given a compiled Java bytecode program

⁻  Discover Algorithmic Complexity (AC) vulnerabili,es

Mo,va,on

2	

<?xml	version="1.0"?>	
<!DOCTYPE	lolz	[
	<!ENTITY	lol	"lol">	
	<!ELEMENT	lolz	(#PCDATA)>	
	<!ENTITY	lol1	"&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">	
	<!ENTITY	lol2	"&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">	
	<!ENTITY	lol3	"&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">	
…	
	<!ENTITY	lol7	"&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">	
	<!ENTITY	lol8	"&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">	
	<!ENTITY	lol9	"&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">	
]>	
<lolz>&lol9;</lolz>	

XML	Parser	

Parsing	a	specially	craVed	input	file	of	less	than	a	kilobyte	creates	a	string	of	109		
concatenated	“lol”	strings	requiring	approximately	3	gigabytes	of	memory.	

learn invent impact

o  DARPA Space/Time Analysis for Cybersecurity (STAC) program
⁻  Given a compiled Java bytecode program

⁻  Discover Algorithmic Complexity (AC) vulnerabili,es

⁻  Vulnerabili,es are defined with respect to a budget
•  Example: Max input size 1kb, execu,on ,me exceeds 300s on a given reference

plaWorm

Mo,va,on

3	

learn invent impact

o  Approach

o  Sta,c and Dynamic Analysis Tools
o  Sta,c loop analysis

o  Instrumenta,on and dynamic analysis

o  Case Study
o  Walkthrough analysis

o  Q/A

Overview

4	

learn invent impact

o  Algorithmic complexity (AC) vulnerabili,es are rooted in the space and ,me
complexi,es of externally-controlled execu,on paths with loops.
⁻  Exis,ng tools for compu,ng the loop complexity are limited and cannot prove

termina,on for several classes of loops.

⁻  At the extreme, a completely automated detec,on of AC vulnerabili,es amounts to
solving the intractable hal,ng problem.

o  Key Idea: Combine human intelligence with sta,c and dynamic analysis to
achieve scalability and accuracy.
⁻  A lightweight sta,c analysis is used for a scalable explora,on of loops in bytecode

from large so\ware, and an analyst selects a small subset of these loops for further
evalua,on using a dynamic analysis for accuracy.

Approach

5	

learn invent impact

1.  Automated Explora7on: Iden,fy loops, pre-compute their crucial a]ributes
such as intra- and inter-procedural nes,ng structures and depths, and
termina,on condi,ons.

2.  Hypothesis Genera7on: Through an interac,ve inspec,on of the pre-
computed informa,on the analyst hypothesizes plausible AC vulnerabili,es
and selects candidate loops for further examina,on using dynamic analysis.

3.  Hypothesis Valida7on: The analyst inserts probes and creates a driver to
exercise the program by feeding workloads to measure resource
consump,on for the selected loops.

Vulnerability Detec,on Process

6	

learn invent impact

o  Loop Call Graph (LCG)
⁻  Recovers loop headers in bytecode using the DLI algorithm [Wei SAS 2007]

⁻  Combines call rela,onships to produce a compact visual model to explore intra- and
inter-procedural nes,ng structures of loops.

⁻  Constructed sta,cally, interac,ve, expandable, corresponds to source

o  Time Complexity Analyzer (TCA)
⁻  A dynamic analyzer that enables the analyst to automa,cally instrument the

selected loops with resource usage probes

⁻  Skeleton driver genera,on

⁻  Linear regression to es,mate complexity

Sta,cally-informed Dynamic Analysis (SID) Tools

7	

learn invent impact

Loop Call Graph

8	

Called Outside Loop

Called Inside Loop

Nodes:
 - Methods containing loops (blue)
 - Methods reaching methods
 containing loops (white)
Edges:
 - Call rela,onships
 - Color a]ributes to show
 placement of call site in loop

learn invent impact

Control Flow Loop View

9	

o  Loop levels are shaded
darker for each nes,ng
level

o  Branch condi,on
coloring
⁻  Red is false

⁻  Green is true

o  Loop back edge is grey

o  Uncondi,onal is black

learn invent impact

Interac,ve Graph Models – Tradi,onal Call Graph

10	

CFG		

0-Level	Call	graph	

Call	Graph	“smart	view”	

learn invent impact

Interac,ve Graph Models – Tradi,onal Call Graph

11	

Complete	Call	Graph	

Call	Graph	“smart	view”	

learn invent impact

Interac,ve Graph Models – Loop Call Graph (Expandable)

12	

Loop	Call	Graph	“smart	view”	

expandable	

learn invent impact

Interac,ve Graph Models – Loop Call Graph

13	

Vulnerability	

learn invent impact

o  Analyst picks entry point in the app using Loop Call
Graph (LCG) view

⁻  LCG: Induced subgraph of reachable methods
that contain loops

o  Analyst selects methods from the LCG view to
instrument

⁻  Probe choices: Itera,on counters & Wall clock
,mers

o  Automa,c probe inser,on into Jimple & reassembly
into bytecode

o  Automa,c driver skeleton genera,on

⁻  Analyst fills in the driver with code that provides
test input

o  Automa,c plot of the collected measurements for the
given test input

Time Complexity Analyzer

14	

learn invent impact

o  Itera,on Counters
⁻  Tracks the number of ,mes a loop header is executed

⁻  PlaWorm independent, repeatable

o  Wall Clock Timers
⁻  Uses ,mestamps to measure the cumula,ve ,me spent in a loop

⁻  More prone to noisy and inaccuracy, but s,ll useful
•  Consider: caching or garbage collec,on side effects on the run,me

o  Probes are inserted a\er selected loop headers

TCA Instrumenta,on

15	

learn invent impact

o  Generates driver
“skeleton” with
callsites to target
methods

o  Workload is provided
by the user
⁻  Workload should map

inputs to a “workload
size”

Driver Genera,on

16	

learn invent impact

o  Plots results on a log-log scale

o  Linear regression to fit
measurements

o  R2 error value

o  A slope of m on the log-log plot
indicates the measured empirical
complexity of nm.

o  Poten,al use in educa,on for
comparing empirical complexi,es
of two algorithms

Complexity Analysis

17	

 0
 5

 10
 15
 20
 25
 30

 0 2 4 6 8 10 12 14 16

lo
g(

co
un

te
r)

log(input size)

linear, slope = 1.83, R2 = 0.99
binary, slope = 1.23, R2 = 0.99

Linear	vs.	Binary	Inserhon	Sort	Performance	on	Random	Data	

learn invent impact

Walkthrough of Blogger

18	
learn invent impactwww.ece.iastate.edu

learn invent impact

Analyst Goal
–  Find most expensive loops reachable in the app
–  Verify if they violate resource consump,on limit within the budget

Demo: SID tools used to find AC vulnerability
–  Loop Call Graph: Find loops reachable from points of interest
–  Smart Views: On-demand composable analysis
–  Time Complexity Analyzer: Measure run,me performance of

loops for inputs within budget

19

learn invent impactwww.ece.iastate.edu

Blogger Walkthrough/Workflow

learn invent impact learn invent impactwww.ece.iastate.edu learn invent impactwww.ece.iastate.edu

20

Blogger > How we found the AC vulnerability

1.  Follow call graphs from entry point to code that serves client requests
–  Call graph from JavaWebServer.main() is too large

–  No,ce that JDK APIs are used to start Threads

–  Look at reverse call graph from Thread.start() to see what threads are started

2.  Iden,fy use of threads in applica,on server design
–  ServerRunnable is listener thread

–  ClientHandler is request processor thread

3.  Iden,fy loops reachable from ClientHandler using LCG
–  Narrow down scope of vulnerability to 25 of the 422 methods

4.  Formulate & Validate Hypothesis
–  Run dynamic analysis informed by LCG to find method causing vulnerability

learn invent impact learn invent impactwww.ece.iastate.edu learn invent impactwww.ece.iastate.edu

21

Step 1 – Locate use of Threads

Zooming into leaves of call graph from
JavaWebServer.main()	shows JDK APIs are
used to start Threads

NanoHTTPD is a threaded web server.

Q.	Where	are	threads	started	in	the	app?	Which	threads	handle	client	requests?	

learn invent impact learn invent impactwww.ece.iastate.eduwww.ece.iastate.edu

Step 2 – ClientHandler Thread Handlers HTTP requests

ClientHandler handles client requests

Forward call graph from ClientHandler.run() is

s,ll large: 483 nodes, 1135 edges

Q. What loops in the app are reachable from ClientHandler.run()?

learn invent impact learn invent impactwww.ece.iastate.eduwww.ece.iastate.edu

Step 3 – Loop Call Graph

Significantly more compact view than the
 original call graph

- 79 nodes, 150 edges in LCG from ClientHandler.run

- 41 loops reached from ClientHandler.run

- Compared to 483 nodes, 1135 edges in the call graph

- Focuses analyst a]en,on on loops,

 while preserving call reachability

- Includes the vulnerability - URIVerifier.verify()

Analyst wants to find “interes,ng” methods to inspect

learn invent impact learn invent impactwww.ece.iastate.eduwww.ece.iastate.edu

Step 4 – Dynamic Analysis Informed by LCG

1.  Analyst uses TCA to probe each of the 41 loops using Itera,on
Counter instrument

2.  TCA compiles, runs instrumented jar
(Instrumented Blogger server is started)

3.  Once server is started, analyst interacts with the applica,on
using a web browser

4.  TCA records the number of itera,ons for each loop execu,on

learn invent impact learn invent impactwww.ece.iastate.eduwww.ece.iastate.edu

Step 4 – Dynamic Analysis Informed by LCG

Analyst issues 3 sample URLs to server
“/”

“/test”

“/stac/example/Example”

Instrumented server counts and saves
 # itera,ons for each loop exercised

2 methods record large itera,on counts
 - HTTPSession.findHeaderEnd()
 - URIVerifier.verify()

learn invent impact learn invent impactwww.ece.iastate.eduwww.ece.iastate.edu

Step 4 – Dynamic Analysis Informed by LCG

•  Single loop

•  Single termina,on condi,on

•  Loop induc,on variable splitbyte:
–  Modified in one loca,on inside the loop body

–  Monotonically increases up to termina,on condi,on

learn invent impact learn invent impactwww.ece.iastate.eduwww.ece.iastate.edu

Step 4 – Dynamic Analysis Informed by LCG

•  3 loops

•  Logic behind push and pop on loop induc,on variable tuples is unclear

•  Analyst decides to instrument URIVerifier.verify() separately

learn invent impact learn invent impactwww.ece.iastate.eduwww.ece.iastate.edu

Step 4 – Dynamic Analysis Informed by LCG

Analyst uses TCA to instrument URIVerifier.verify()	with itera,on counter
Driver to test the method with URL strings of increasing length:

learn invent impact learn invent impactwww.ece.iastate.eduwww.ece.iastate.edu

Step 4 – Dynamic Analysis Informed by LCG

TCA produces a plot of # itera,ons in URIVerifier.verify() vs. URL string length

Analyst confirms URIVerifier.verify() exceeds budgeted ,me of 300 seconds

 for URL strings of length > 35

learn invent impact

o  SID Tools: h]ps://enso\corp.github.io/SID/
⁻  Eclipse Plugin

⁻  Open Source, MIT License

⁻  Video Demo

o  Atlas
⁻  Supports C/Java/JVM Bytecode (Jimple IR)

⁻  Free for academic use/open source projects

⁻  h]p://www.enso\corp.com/atlas/

o  Soot
⁻  Bytecode to Jimple transforma,on

⁻  h]ps://sable.github.io/soot/

Tools

30	

learn invent impact

o  Be]er heuris,cs to guide analyst to problem areas
⁻  Loops with complex termina,on condi,ons

⁻  Non-monotonic loops

o  Thinking hard about input genera,on

Future Work

31	

learn invent impact

o  Ques,ons?

Thank you.

32	

